scholarly journals Technical and Economic Analysis of Net Energy Metering for Residential House

Author(s):  
T. M. N. T. Mansur ◽  
N. H. Baharudin ◽  
R. Ali

Renewable Energy Act (RE Act) has been gazetted by the Malaysian Government in 2011 to encourage energy generation from renewable resources. Under Feed-in Tariff (FiT) scheme, solar PV has gained popularity due to its high FiT rates. However, the FiT scheme for solar PV has expired in 2016 and been replaced by the Net Energy Metering (NEM) scheme. The objective of this research work is to technically and economically analyze the solar PV system for a residential house under NEM scheme. The methodology involves gathering solar energy resource information and daily residential load profile, sizing PV array together with grid-connected inverter and then lastly simulation of the design system by using PVsyst software. Based on the results obtained, the amount of energy generated is higher when the capacity of solar PV system is increased. While most of the energy generated is exported to the grid, only up to 25% of load demand is supplied by the solar PV system. From economic aspect, the residential house does not need to pay the electricity bill due to the self-consumed of energy generated and profit gained from excess energy exported to the grid. From the environmental aspect, 2,434 kWh energy generated from renewable resource annually and consumed by the residential load has replaced the fossil fuel based power from grid. This value is equivalent to almost 1.7 tons of CO2 avoidance to the environment.

2018 ◽  
Vol 7 (3) ◽  
pp. 450-457
Author(s):  
T. M. N. T. Mansur ◽  
N. H. Baharudin ◽  
R. Ali

Malaysia has moved forward by promoting the use of renewable energy such as solar PV to the public to reduce dependency on fossil fuel-based energy resources. Due to the concern on high electricity bill, Universiti Malaysia Perlis (UniMAP) is keen to install solar PV system as an initiative for energy saving program to its buildings. The objective of this paper is to technically and economically evaluate the different sizing of solar PV system for university buildings under the Net Energy Metering (NEM) scheme. The study involves gathering of solar energy resource information, daily load profile of the buildings, sizing PV array together with grid-connected inverters and the simulation of the designed system using PVsyst software. Based on the results obtained, the amount of solar energy generated and used by the load per year is between 5.10% and 20.20% from the total annual load demand. Almost all solar energy generated from the system will be self-consumed by the loads. In terms of profit gained, the university could reduce its electricity bill approximately between a quarter to one million ringgit per annum depending on the sizing capacity. Beneficially, the university could contribute to the environmental conservation by avoiding up to 2,000 tons of CO2 emission per year.


2020 ◽  
Vol 19 (1) ◽  
pp. 50-54
Author(s):  
Abdul Hafiz Razali ◽  
Md Pauzi Abdullah ◽  
Dalila Mat Said ◽  
Mohamad Yusri Hassan

Net energy metering (NEM) is a financial scheme that allows a consumer to generate, use and sell their excess energy to the grid. The main purpose of NEM is for self-consumption to reduce demand from the grid. It will allow customer to avoid being charged with expensive electricity tariff and hence reducing their monthly electricity bill. In other words, the annualized electricity cost could be reduced. NEM is commonly offered to residential solar photovoltaic (PV) system. Different PV size will determine the amount of energy that can be generated. This paper compares the annualized electricity cost of different residential customer types (large, medium and small) for different PV size under Malaysia’s net energy metering (NEM) scheme. This paper utilizes the load profile and solar irradiation data for Malaysia. The results show that high PV size does not guarantee reduction in annualized electricity cost especially for medium customers as the excess PV generation can only be accumulated for 24 months. Large customers may have benefited the most with lower annualized cost with larger PV system, while small customers may not have benefited at all.


Author(s):  
T. M. N. T. Mansur ◽  
N. H. Baharudin ◽  
R. Ali

<p>The use of solar photovoltaic (PV) system has grown significantly in Malaysia after Renewable Energy Act has been gazetted in 2011.The objective of this paper is to highlight the technical and economic analysis of solar PV DC system to generate enough energy for residential customer group that consumed 200 kWh per month so that they are less dependent on energy from the utility grid. The results are then compared to the solar PV AC system with similar load setup. The methodology involves gathering solar energy resource, configuring daily load demand, sizing PV array, battery bank and inverter and lastly simulation of the design system by using Homer software.  Based on Homer simulation, the solar PV AC system required slightly larger PV array sizes than the solar PV DC system to compensate losses due to the inverter efficiency which is not counted in DC system.Moreover, the solar PV AC system is almost 8.0% more expensive with 6% higher COE than the solar PV DC system due to the present of inverter.Lastly, both systems will benefit from reduction of energy consumed up to 2,434 kWh annually and to the environmental aspect, will avoid 1.7 tons of CO<sub>2</sub> releases into the atmosphere.</p>


2021 ◽  
Vol 5 (S1) ◽  
pp. 1467-1479
Author(s):  
Noriza Mohd Saad ◽  
Izzaamirah Ishak ◽  
Amar Hisham Jaaffar ◽  
Mohd Zamri Laton

Generate energy by Solar PV installation among prosumer, i.e; domestic, commercial, industrial as well as agriculture for self-consumption under Net Energy Metering (NEM) system become more popular in Malaysia. One, if not the only reason, is that day-to-day installation costs are kept at a decreasing rate and this is one of the reasonable ones for future investments and energy savings. By considering this issue, this study is motivated to investigate the relationship between installed capacity with the total installation costs as represented by equipment costs, installed costs, and operating costs. Secondary data was utilized provided by Sustainable Energy Development Authority (SEDA) Malaysia and retrieved from Malaysian Energy Information Hub (MEIH). The data is then run by multivariate regression, which is focused on the random and fixed-effect model. Overall, the findings indicate that there is a significant relationship between installed capacities with total installation costs among all categories of the prosumer in Malaysia. It would be recommended that the policymaker can increase the quota capacity allocation to the prosumer since the costs are at a diminishing rate that led to the take-up rate increase.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Razzaqul Ahshan ◽  
A. M. Al-Hanshi ◽  
M. A. Al-Naabi ◽  
H. A. Al-Hashmi ◽  
A. H. Al-Badi

This paper presents a techno-economic investigation of an integrated rooftop solar PV system for typical home applications in Oman that reduces the power consumption from the grid and export excess PV generated power back to the gird. Since renewable energy systems design technically depends on the site, this study selects a typical two-story villa in Al-Hamra, Oman as the site. Temperature is one of the critical parameters in this design as it varies widely over the day and has a considerable variation from one season to another in Oman. With the effect of temperature variation, the PV system has designed using system models for the required load of the home. The available rooftop space and the grid-connection availability are two main design constraints have realized in this study. This research also evaluates the economic feasibility of the design system considering the energy export tariff as per the Bulk Supply Tariff (BST) scheme in Oman. The design outcome reveals that the designed PV system can supply the load energy requirement in a year. In addition, the rooftop solar PV system can sell surplus energy back to the grid that generates additional revenue for the owner of the system. The economic performance indices such as payback period, internal rate of return, net present value, and profitability index ensure the financial feasibility of the designed rooftop solar PV system for the selected home. 


Author(s):  
Abdul Hafiz Bin Razali

The current Malaysia’s Net Energy Metering (NEM) scheme has been updated in 2019 that credits excess generation into the next billing month at retail rate compare to at displaced cost. The new NEM may attract more installation of solar photovoltaic (PV) system among residential customers. However, it is discovered that customers with low monthly electricity consumptions are still not benefited since their electricity cost is lower than the PV generation cost. Implementing time-of-use (TOU) pricing on NEM scheme may overcome the problem as it based on hourly energy usage. This paper compares the annualized energy cost of residential PV system under different TOU prices and NEM scheme. The results show that an optimized TOU prices as suggested in this paper may give financial benefits to all residential customers with PV system, including the one with low monthly consumption.


2021 ◽  
Vol 13 (17) ◽  
pp. 9959
Author(s):  
Alaa A. F. Husain ◽  
Maryam Huda Ahmad Phesal ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Ungku Anisa Ungku Amirulddin ◽  
Abdulhadi H. J. Junaidi

In the last 10 years, Malaysia has aggressively moved towards a higher penetration of 20% of renewable energy (RE) in the Malaysian energy mix by 2025. Several incentives and initiatives have taken place with the aim of achieving the goals in terms of installed capacity and catching up with the leading countries in these sectors. Since 2011, Malaysia started the Feed-in-Tariff (FiT) before introducing Net Energy Metering (NEM) in 2017, and recently, another initiative known as NEM 3.0 has been introduced. This paper reviews all policies undertaken by the Malaysian government from 2011 to 2021 in spearheading the country to be on par with others, especially those in the Southeast Asian (SEA) region. The effectiveness of each policy on the growth of photovoltaic PV energy installation is highlighted, and the latest update on the NEM 3.0 policy is also discussed. A comparison of each approach in terms of installed capacity and system connection setup to the grid is also considered for the benefit and sharing of knowledge from one of the fastest-developing countries in the region.


Sign in / Sign up

Export Citation Format

Share Document