scholarly journals Analysis of wave propagation for wireless implantable body area network application

Author(s):  
N. H. Ramli ◽  
Haryati Jaafar ◽  
Y. S. Lee ◽  
Hazila Othman

The enhancement technologies of wireless body area network improved the health monitoring system. Previous work have been designed the implantable chip printed antenna at 4.8 GHz. This paper is continuing the investigation where the antenna wave propagation in term of attenuation and polarization were studied. The antenna is implanted in human hand voxel model from CST Microwave Studio Software. The performances of the antenna are evaluated in term of return loss, gain and efficiency. Results show that the rate attenuation for the propagation is approximately 0.16 dB up to 0.42 dB. All the results will be guidelines in designing implantable antennas in futures.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
M. J. Islam ◽  
A. W. Reza ◽  
A. S. M. Z. Kausar ◽  
H. Ramiah

The advent of technology with the increasing use of wireless network has led to the development of Wireless Body Area Network (WBAN) to continuously monitor the change of physiological data in a cost efficient manner. As numerous researches on wave propagation characterization have been done in intrabody communication, this study has given emphasis on the wave propagation characterization between the control units (CUs) and wireless access point (AP) in a hospital scenario. Ray tracing is a tool to predict the rays to characterize the wave propagation. It takes huge simulation time, especially when multiple transmitters are involved to transmit physiological data in a realistic hospital environment. Therefore, this study has developed an accelerated ray tracing method based on the nearest neighbor cell and prior knowledge of intersection techniques. Beside this, Red-Black tree is used to store and provide a faster retrieval mechanism of objects in the hospital environment. To prove the superiority, detailed complexity analysis and calculations of reflection and transmission coefficients are also presented in this paper. The results show that the proposed method is about 1.51, 2.1, and 2.9 times faster than the Object Distribution Technique (ODT), Space Volumetric Partitioning (SVP), and Angular Z-Buffer (AZB) methods, respectively. To show the various effects on received power in 60 GHz frequency, few comparisons are made and it is found that on average −9.44 dBm, −8.23 dBm, and −9.27 dBm received power attenuations should be considered when human, AP, and CU move in a given hospital scenario.


Sign in / Sign up

Export Citation Format

Share Document