scholarly journals Denoising electromyogram and electroencephalogram signals using improved complete ensemble empirical mode decomposition with adaptive noise

Author(s):  
S. Elouaham ◽  
A. Dliou ◽  
N. Elkamoun ◽  
R. Latif ◽  
S. Said ◽  
...  

The health of the brain and muscles depends on the proper analysis of electroencephalogram and electromyogram signals without noise. The latter blends into the recording of biomedical signals for external or internal reasons of the human body. Therefore, to obtain a more accurate signal, it is needed to select filtering techniques that minimize the noise. In this study, the techniques used are empirical mode decomposition and its variants. Among the new versions of variants is the improved complete ensemble empirical mode decomposition with adaptive noise. These methods are applied to electroencephalogram and electromyogram signals corrupted by natural noise and white Gaussian noise. The obtained results through the use of the improved complete ensemble empirical mode decomposition with adaptive noises how the high performance that includes minimizing the noise and the effectiveness of the components of the signals used in the present research. This method has low values of the mean square error and high values of signal-to-noise ratio compared to other methods used in this study.

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 597 ◽  
Author(s):  
Guohui Li ◽  
Zhichao Yang ◽  
Hong Yang

Due to the non-linear and non-stationary characteristics of ship radiated noise (SR-N) signal, the traditional linear and frequency-domain denoising methods cannot be used for such signals. In this paper, an SR-N signal denoising method based on modified complete ensemble empirical mode decomposition (EMD) with adaptive noise (CEEMDAN), dispersion entropy (DE), and interval thresholding is proposed. The proposed denoising method has the following advantages: (1) as an improved version of CEEMDAN, modified CEEMDAN (MCEEMDAN) combines the advantages of EMD and CEEMDAN, and it is more reliable than CEEMDAN and has less consuming time; (2) as a fast complexity measurement technology, DE can effectively identify the type of intrinsic mode function (IMF); and (3) interval thresholding is used for SR-N signal denoising, which avoids loss of amplitude information compared with traditional denoising methods. Firstly, the original signal is decomposed into a series of IMFs using MCEEMDAN. According to the DE value of IMF, the modes are divided into three types: noise IMF, noise-dominated IMF and pure IMF. After noise IMFs are removed, the noise-dominated IMFs are denoised using interval thresholding. Finally, the pure IMF and the processed noise-dominated IMFs are reconstructed to obtain the final denoised signal. The denoising experiments with the Chen’s chaotic system show that the proposed method has a higher signal-to-noise ratio (SNR) than the other three methods. Applying the proposed method to denoise the real SR-N signal, the topological structure of chaotic attractor can be recovered clearly. It is proved that the proposed method can effectively suppress the high-frequency noise of SR-N signal.


2020 ◽  
Vol 42 (2) ◽  
pp. 57-73
Author(s):  
Suya Han ◽  
Yufeng Zhang ◽  
Keyan Wu ◽  
Bingbing He ◽  
Kexin Zhang ◽  
...  

Complete and accurate separation of harmonic components from the ultrasonic radio frequency (RF) echo signals is essential to improve the quality of harmonic imaging. There are limitations in the existing two commonly used separation methods, that is, the subjectivity for the high-pass filtering (S_HPF) method and motion artifacts for the pulse inversion (S_PI) method. A novel separation method called S_CEEMDAN, based on the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, is proposed to adaptively separate the second harmonic components for ultrasound tissue harmonic imaging. First, the ensemble size of the CEEMDAN algorithm is calculated adaptively according to the standard deviation of the added white noise. A set of intrinsic mode functions (IMFs) is then obtained by the CEEMDAN algorithm from the ultrasonic RF echo signals. According to the IMF spectra, the IMFs that contain both fundamental and harmonic components are further decomposed. The separation process is performed until all the obtained IMFs have been divided into either fundamental or harmonic categories. Finally, the fundamental and harmonic RF echo signals are obtained from the accumulations of signals from these two categories, respectively. In simulation experiments based on CREANUIS, the S_CEEMDAN-based results are similar to the S_HPF-based results, but better than the S_PI-based results. For the dynamic carotid artery measurements, the contrasts, contrast-to-noise ratios (CNRs), and tissue-to-clutter ratios (TCRs) of the harmonic images based on the S_CEEMDAN are averagely increased by 31.43% and 50.82%, 18.96% and 10.83%, as well as 34.23% and 44.18%, respectively, compared with those based on the S_HPF and S_PI methods. In conclusion, the S_CEEMDAN method provides improved harmonic images owing to its good adaptivity and lower motion artifacts, and is thus a potential alternative to the current methods for ultrasonic harmonic imaging.


Sign in / Sign up

Export Citation Format

Share Document