scholarly journals Design of fractional order PID controller for AVR system using whale optimization algorithm

Author(s):  
Layla H. Abood ◽  
Bashra Kadhim Oleiwi

In this paper a robust fractional order PID (FOPID) controller is proposed to control the automatic voltage regulator (AVR) system, the tuning of the controller gains are done using whale optimization algorithm (WOA) and integral time absolute error (ITAE) cost function is adopted to achieve an efficient performance. The transient analysis was done and compared with conventional PID in terms of overshoot, settling time, rise time, and peak time to explain the superiority of the proposed controller. Finally, a robustness analysis is done by adding external disturbances to the system and changing the system parameters by ±20% from its original value, the controller overcomes the disturbances signals with less than 0.25 s and faces the changes of the system values and returning the response within (0.7-1) sec and led the system to the desired response efficiently. The numerical simulations showed that the smart WOA offers satisfying results and faster response reflected clearly on the robust and stable performance of the proposed controller in improving the transient analysis of AVR system response.

2019 ◽  
Vol 33 (07) ◽  
pp. 1950075 ◽  
Author(s):  
Gong Ren ◽  
Renhuan Yang ◽  
Renyu Yang ◽  
Pei Zhang ◽  
Xiuzeng Yang ◽  
...  

Compared to the integer-order systems, the system characteristics of the fractional system are closer to the system characteristics of the real engineering system, the study found beyond that, strictly speaking, various physical phenomena in nature are nonlinear. The problem of parameter estimation problem of fractional-order nonlinear systems can be transformed into the problem of parameter optimization problem by constructing an appropriate fitness function. This paper proposes a hybrid improvement algorithm based on whale optimization algorithm (WOA) to solve this problem and verify it both in Lorenz system and Lu system. The simulation result shows that the hybrid improved algorithm is superior to genetic algorithm (GA), particle swarm optimization (PSO), grasshopper optimization algorithm (GOA) and WOA in convergence speed and accuracy.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1472 ◽  
Author(s):  
Ismail Akbar Khan ◽  
Ali S. Alghamdi ◽  
Touqeer Ahmed Jumani ◽  
Arbab Alamgir ◽  
Ahmed Bilal Awan ◽  
...  

Owing to the superior transient and steady-state performance of the fractional-order proportional-integral-derivative (FOPID) controller over its conventional counterpart, this paper exploited its application in an automatic voltage regulator (AVR) system. Since the FOPID controller contains two more control parameters (µ and λ ) as compared to the conventional PID controller, its tuning process was comparatively more complex. Thus, the intelligence of one of the most recently developed metaheuristic algorithms, called the salp swarm optimization algorithm (SSA), was utilized to select the optimized parameters of the FOPID controller in order to achieve the optimal dynamic response and enhanced stability of the studied AVR system. To validate the effectiveness of the proposed method, its performance was compared with that of the recently used tuning methods for the same system configuration and operating conditions. Furthermore, a stability analysis was carried out using pole-zero and bode stability criteria. Finally, in order to check the robustness of the developed system against the system parameter variations, a robustness analysis of the developed system was undertaken. The results show that the proposed SSA-based FOPID tuning method for the AVR system outperformed its conventional counterparts in terms of dynamic response and stability measures.


2019 ◽  
Vol 10 (4) ◽  
pp. 755-767 ◽  
Author(s):  
Ahmed M. Mosaad ◽  
Mahmoud A. Attia ◽  
Almoataz Y. Abdelaziz

2021 ◽  
Vol 11 (2) ◽  
pp. 489
Author(s):  
Seongik Han

In this study, a fractional-order sliding mode backstepping control method was proposed, which involved the use of a fractional-order command filter, an interval type-2 fuzzy logic system approximation method, and a grey wolf and weighted whale optimization algorithm for multi-input multi-output nonlinear dynamic systems. For designing the stabilizing controls of the backstepping control, a novel fractional-order sliding mode surface was suggested. Further, the transformed errors that occurred during the recursive design steps were easily compensated by the controllers constructed using a new fractional-order command filter. Thus, the differentiation issue of the virtual control in the conventional backstepping control design could be bypassed with a simpler controller structure. Subsequently, the unknown plant dynamics were approximated by an interval type-2 fuzzy logic system. The uncertainties, such as the approximation error and the external disturbance, were compensated by the fractional-order sliding mode control that was added in the backstepping controller. Furthermore, the controller parameters and the fuzzy logic system were optimized via a grey wolf and weighted whale optimization algorithm to obtain a faster tuning process and an improved control performance. Simulation results demonstrated that the fractional-order sliding mode backstepping control scheme provides enhanced control performance over the conventional backstepping control system. Thus, in this paper, a fractional-order sliding mode surface and fractional-order backstepping control are studied, which provide more rapid convergence and enhanced robustness. Furthermore, a hybrid grey wolf and weighted whale optimization algorithm are proposed to provide an improved learning performance than those of conventional grey wolf optimization and weighted whale optimization methods.


Author(s):  
Sujatha Nebarthi

In the present paper presents the Whale Optimization Algorithm technique (WOA) it is a partial search algorithm. To advance the improved the performance of the PID controller uses whale optimization algorithm as the optimization technique. The proposed algorithm is used to tuning the controllers very fast and tuning is very high quality in PID Controllers is most effectively. It growths the system by its main transient response and by comparing the all terms of rise time (tr), settling time (ts) and peak overshoot (% Mp). More over the three gains are (proportional (kP), integral (ki) and derivative (Kd)) of the PID controller have been enhanced by the WOA technique to control the Automatic Voltage Regulator system. In this the transient response of the terminal voltage may be observed from the well-conditioned analysis they can be suggest WOA established PID Controller and which reveal a very most upgrade strong control structure for the managing the AVR system in the Electrical Power System. The simulation result of the propounded controller has shown superior result to the other optimization techniques on PID controller along with the transient response parameters and improve and supervise the performance of the System


Sign in / Sign up

Export Citation Format

Share Document