scholarly journals Raga classification based on pitch co-occurrence based features

Author(s):  
Vibhavari Rajadnya ◽  
Kalyani R. Joshi

<p><span>Analysis and classification of raga is the need of time especially in music industry. With the presence of abundance of multimedia data on internet, it is imperative to develop appropriate tools to classify ragas. In this work, an attempt has been made to use occurrence pattern of pitch based svara (note) for classification. Sequence of notes is an important cue in the raga classification. Pitch based svara (note) profile is formed. This pattern presents in the signal along with its statistical distribution can be characterized using co-occurrence matrix. Proposed note co-occurrence matrix summarizes this aspect. This matrix captures both tonal and temporal aspects of melody. Ragas differ in terms of distribution of spectral power. K-nearest neighbor (KNN) has been used as the classifier. Publicly available database consisting of 300 recordings of 30 Hindustani ragas consisting of 130 hours of audio recordings stored as 160 kbps mp3 fileswhich is part of CompMusic project is used. Leave one out validation strategy is used to evaluate the performance. Experimental result indicates the effectiveness of the proposed scheme which is giving accuracy of 93.7%.</span></p>

2017 ◽  
Vol 9 (1) ◽  
pp. 1-9
Author(s):  
Fandiansyah Fandiansyah ◽  
Jayanti Yusmah Sari ◽  
Ika Putri Ningrum

Face recognition is one of the biometric system that mostly used for individual recognition in the absent machine or access control. This is because the face is the most visible part of human anatomy and serves as the first distinguishing factor of a human being. Feature extraction and classification are the key to face recognition, as they are to any pattern classification task. In this paper, we describe a face recognition method based on Linear Discriminant Analysis (LDA) and k-Nearest Neighbor classifier. LDA used for feature extraction, which directly extracts the proper features from image matrices with the objective of maximizing between-class variations and minimizing within-class variations. The features of a testing image will be compared to the features of database image using K-Nearest Neighbor classifier. The experiments in this paper are performed by using using 66 face images of 22 different people. The experimental result shows that the recognition accuracy is up to 98.33%. Index Terms—face recognition, k nearest neighbor, linear discriminant analysis.


2020 ◽  
Vol 32 (03) ◽  
pp. 2050017
Author(s):  
Ayat Karrar ◽  
Mai S. Mabrouk ◽  
Manal AbdEl Wahed

Cancers typically are both highly dangerous and common. Among these, lung cancer has one of the lowest survival rates compared to other cancers. CT scans can reveal dense masses of different shapes and sizes; in the lungs, these are called lung nodules. This study applied a computer-aided diagnosis (CAD) system to detect candidate nodules — and diagnose it either solitary or juxtapleural — with equivalent diameters, ranging from 7.78[Formula: see text]mm to 22.48[Formula: see text]mm in a 2D CT slice. Pre-processing and segmentation is a very important step to segment and enhance the CT image. A segmentation and enhancement algorithm is achieved using bilateral filtering, Thresholding the gray-level transformation function, Bounding box and maximum intensity projection. Border artifacts are removed by clearing the lung border, erosion, dilation and superimposing. Feature extraction is done by extracting 20 gray-level co-occurrence matrix features from four directions: [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] and one distance of separation ([Formula: see text] pixel). In the classification step, two classifiers are proposed to classify two types of nodules based on their locations: as juxtapleural or solitary nodules. The two classifiers are a deep learning convolutional neural network (CNN) and the K-nearest neighbor (KNN) algorithm. Random oversampling and 10-fold cross-validation are used to improve the results. In our CAD system, the highest accuracy and sensitivity rates achieved by the CNN were 96% and 95%, respectively, for solitary nodule detection. The highest accuracy and sensitivity rates achieved by the KNN model were 93.8% and 96.7%, respectively, and K was set to 1 to detect juxtapleural nodules.


Author(s):  
Ni Luh Wiwik Sri Rahayu Ginantra

Batik motifs are the base or the blueprint of batik patterns which serve as the core of the batik image design, and therefore the meaning of a sign, symbol or logo in a batik work can be revealed through its motifs. Visual identification requires visual skills and knowledge in classifying patterns formed in a batik image. Lack of media providing information on batik motifs makes the public unable to have sufficient information about batik motifs. Looking at this phenomenon, this study is conducted in order to perform visual identification using a computer that can assist and facilitate in identifying the types of batik. The methods used for batik image recognition are the Co-occurrence Matrix method to provide extraction of batik texture features, and the Geometric Moment Invariant method, while K Nearest Neighbor is used to classify batik images. The results on the accuracy values obtained reveal that the of 80%, compared to the accuracy value result using the Co-occurrence Matrix method that is 70%.  


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Sheng-wei Fei

Fault diagnosis of bearing based on variational mode decomposition (VMD)-phase space reconstruction (PSR)-singular value decomposition (SVD) and improved binary particle swarm optimization (IBPSO)-K-nearest neighbor (KNN) which is abbreviated as VPS-IBPSOKNN is presented in this study, among which VMD-PSR-SVD (VPS) is presented to obtain the features of the bearing vibration signal (BVS), and IBPSO is presented to select the parameter K of KNN. In IBPSO, the calculation of the next position of each particle is improved to fit the evolution of the particles. The traditional KNN with different parameter K and trained by the training samples with the features based on VMD-SVD (VS-KNN) can be used to compare with the proposed VPS-IBPSOKNN method. The experimental result demonstrates that fault diagnosis ability of bearing of VPS-IBPSOKNN is better than that of VS-KNN, and it can be concluded that fault diagnosis of bearing based on VPS-IBPSOKNN is effective.


Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 38 ◽  
Author(s):  
Xiaohong Wu ◽  
Jin Zhu ◽  
Bin Wu ◽  
Chao Zhao ◽  
Jun Sun ◽  
...  

The detection of liquor quality is an important process in the liquor industry, and the quality of Chinese liquors is partly determined by the aromas of the liquors. The electronic nose (e-nose) refers to an artificial olfactory technology. The e-nose system can quickly detect different types of Chinese liquors according to their aromas. In this study, an e-nose system was designed to identify six types of Chinese liquors, and a novel feature extraction algorithm, called fuzzy discriminant principal component analysis (FDPCA), was developed for feature extraction from e-nose signals by combining discriminant principal component analysis (DPCA) and fuzzy set theory. In addition, principal component analysis (PCA), DPCA, K-nearest neighbor (KNN) classifier, leave-one-out (LOO) strategy and k-fold cross-validation (k = 5, 10, 20, 25) were employed in the e-nose system. The maximum classification accuracy of feature extraction for Chinese liquors was 98.378% using FDPCA, showing this algorithm to be extremely effective. The experimental results indicate that an e-nose system coupled with FDPCA is a feasible method for classifying Chinese liquors.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 220
Author(s):  
Wei Sun ◽  
Ying Lv ◽  
Gongchen Li ◽  
Yumin Chen

Forecasting of river ice breakup timing is directly related to the local ice-caused flooding management. However, river ice forecasting using k-nearest neighbor (kNN) algorithms is limited. Thus, a kNN stacking ensemble learning (KSEL) method was developed and applied to forecasting breakup dates (BDs) for the Athabasca River at Fort McMurray in Canada. The kNN base models with diverse inputs and distance functions were developed and their outputs were further combined. The performance of these models was examined using the leave-one-out cross validation method based on the historical BDs and corresponding climate and river conditions in 1980–2015. The results indicated that the kNN with the Chebychev distance functions generally outperformed other kNN base models. Through the simple average methods, the ensemble kNN models using multiple-type (Mahalanobis and Chebychev) distance functions had the overall optimal performance among all models. The improved performance indicates that the kNN ensemble is a promising tool for river ice forecasting. The structure of optimal models also implies that the breakup timing is mainly linked with temperature and water flow conditions before breakup as well as during and just after freeze up.


Author(s):  
Hanfei Zhang ◽  
Yumei Jian ◽  
Ping Zhou

: A class correlation distance collaborative filtering recommendation algorithm is proposed to solve the problems of category judgment and distance metric in the traditional collaborative filtering recommendation algorithm, which is using the advantage of the distance between the same samples and the class related distance. First, the class correlation distance between the training samples is calculated and stored. Second, the K nearest neighbor samples are selected, the class correlation distance of training samples and the difference ratio between the test samples and training samples are calculated respectively. Finally, according to the difference ratio, we classify the different types of samples. The experimental result shows that the algorithm combined with user rating preference can get lower MAE value, and the recommendation effect is better. With the change of K value, CCDKNN algorithm is obviously better than KNN algorithm and DWKNN algorithm, and the accuracy performance is more stable. The algorithm improves the accuracy of similarity and predictability, which has better performance than the traditional algorithm.


2020 ◽  
Vol 1501 ◽  
pp. 012017
Author(s):  
I U W Mulyono ◽  
T C Lukita ◽  
C A Sari ◽  
D R I M Setiadi ◽  
E H Rachmawanto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document