scholarly journals Deteksi Batik Parang Menggunakan Fitur Co-Occurence Matrix Dan Geometric Moment Invariant Dengan Klasifikasi KNN

Author(s):  
Ni Luh Wiwik Sri Rahayu Ginantra

Batik motifs are the base or the blueprint of batik patterns which serve as the core of the batik image design, and therefore the meaning of a sign, symbol or logo in a batik work can be revealed through its motifs. Visual identification requires visual skills and knowledge in classifying patterns formed in a batik image. Lack of media providing information on batik motifs makes the public unable to have sufficient information about batik motifs. Looking at this phenomenon, this study is conducted in order to perform visual identification using a computer that can assist and facilitate in identifying the types of batik. The methods used for batik image recognition are the Co-occurrence Matrix method to provide extraction of batik texture features, and the Geometric Moment Invariant method, while K Nearest Neighbor is used to classify batik images. The results on the accuracy values obtained reveal that the of 80%, compared to the accuracy value result using the Co-occurrence Matrix method that is 70%.  

2009 ◽  
Vol 09 (02) ◽  
pp. 171-199 ◽  
Author(s):  
SHANKAR BHAUSAHEB NIKAM ◽  
SUNEETA AGARWAL

Perspiration phenomenon is very significant to detect the liveness of a finger. However, it requires two consecutive fingerprints to notice perspiration, and therefore may not be suitable for real time authentications. Some other methods in the literature need extra hardware to detect liveness. To alleviate these problems, in this paper, to detect liveness a new texture-based method using only the first fingerprint is proposed. It is based on the observation that real and spoof fingerprints exhibit different texture characteristics. Textural measures based on gray level co-occurrence matrix (GLCM) are used to characterize fingerprint texture. This is based on structural, orientation, roughness, smoothness and regularity differences of diverse regions in a fingerprint image. Wavelet energy signature is also used to obtain texture details. Dimensionalities of feature sets are reduced by Sequential Forward Floating Selection (SFFS) method. GLCM texture features and wavelet energy signature are independently tested on three classifiers: neural network, support vector machine and K-nearest neighbor. Finally, two best classifiers are fused using the "Sum Rule''. Fingerprint database consisting of 185 real, 90 Fun-Doh and 150 Gummy fingerprints is created. Multiple combinations of materials are used to create casts and moulds of spoof fingerprints. Experimental results indicate that, the new liveness detection method is very promising, as it needs only one fingerprint and no extra hardware to detect vitality.


Author(s):  
G. S. N. Murthy ◽  
Srininvasa Rao. V ◽  
T. Veerraju

The human eye can easily identify the type of textures in flooring of the houses and in the digital images visually.  In this work, the stone textures are grouped into four categories. They are bricks, marble, granite and mosaic. A novel approach is developed for decreasing the dimension of stone image and for reducing the gray level range of the image without any loss of significant feature information. This model is named as “Decreased Dimension and Reduced Gray level Range Matrix (DDRGRM)” model. The DDRGRM model consists of 3 stages.  In stage 1, each 5×5 sub dimension of the stone image is reduced into 2×2 sub dimension without losing any important qualities, primitives, and any other local stuff.  In stage 2, the gray level of the image is reduced from 0-255 to 0-4 by using fuzzy concepts.  In stage 3, Co-occurrence Matrix (CM) features are derived from the DDRGRM model of the stone image for stone texture classification.  Based on the feature set values, a user defined algorithm is developed to classify the stone texture image into one of the 4 categories i.e. Marble, Brick, Granite and Mosaic. The proposed method is tested by using the K-Nearest Neighbor Classification algorithm with the derived texture features.  To prove the efficiency of the proposed method, it is tested on different stone texture image databases.  The proposed method resulted in high classification rate when compared with the other existing methods.


Author(s):  
Candra Dewi ◽  
Akbar Grahadhuita ◽  
Lailil Muflikhah

<span>Patchouli is one of the essential plants that have the most potential and widely cultivated in Indonesia. Patchouli is greedily absorbing soil nutrients and organic matter. Therefore, the selection of soil with high organic matter will maximize the patchouli’s productivity. This paper aims to facilitate soil’s organic matter identification by classifying soil image based on the combination of color and texture features. The color feature extraction was done using the Color Moments method and the texture feature was done using Gray Level Co-occurrence Matrix (GLCM) method. The selection of features was performed to obtain the best combination of color and texture features. The selected features then was used as input of classification by using Modified K-Nearest Neighbor (MKNN). The samples of soil that used as data were taken from several districts in Blitar, East Java province. The testing result of this research showed the highest accuracy of 93,33% by using 180 training data, and also particular color and texture feature combination.</span>


2021 ◽  
Vol 13 (6) ◽  
pp. 3497
Author(s):  
Hassan Adamu ◽  
Syaheerah Lebai Lutfi ◽  
Nurul Hashimah Ahamed Hassain Malim ◽  
Rohail Hassan ◽  
Assunta Di Vaio ◽  
...  

Sustainable development plays a vital role in information and communication technology. In times of pandemics such as COVID-19, vulnerable people need help to survive. This help includes the distribution of relief packages and materials by the government with the primary objective of lessening the economic and psychological effects on the citizens affected by disasters such as the COVID-19 pandemic. However, there has not been an efficient way to monitor public funds’ accountability and transparency, especially in developing countries such as Nigeria. The understanding of public emotions by the government on distributed palliatives is important as it would indicate the reach and impact of the distribution exercise. Although several studies on English emotion classification have been conducted, these studies are not portable to a wider inclusive Nigerian case. This is because Informal Nigerian English (Pidgin), which Nigerians widely speak, has quite a different vocabulary from Standard English, thus limiting the applicability of the emotion classification of Standard English machine learning models. An Informal Nigerian English (Pidgin English) emotions dataset is constructed, pre-processed, and annotated. The dataset is then used to classify five emotion classes (anger, sadness, joy, fear, and disgust) on the COVID-19 palliatives and relief aid distribution in Nigeria using standard machine learning (ML) algorithms. Six ML algorithms are used in this study, and a comparative analysis of their performance is conducted. The algorithms are Multinomial Naïve Bayes (MNB), Support Vector Machine (SVM), Random Forest (RF), Logistics Regression (LR), K-Nearest Neighbor (KNN), and Decision Tree (DT). The conducted experiments reveal that Support Vector Machine outperforms the remaining classifiers with the highest accuracy of 88%. The “disgust” emotion class surpassed other emotion classes, i.e., sadness, joy, fear, and anger, with the highest number of counts from the classification conducted on the constructed dataset. Additionally, the conducted correlation analysis shows a significant relationship between the emotion classes of “Joy” and “Fear”, which implies that the public is excited about the palliatives’ distribution but afraid of inequality and transparency in the distribution process due to reasons such as corruption. Conclusively, the results from this experiment clearly show that the public emotions on COVID-19 support and relief aid packages’ distribution in Nigeria were not satisfactory, considering that the negative emotions from the public outnumbered the public happiness.


Jurnal INFORM ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Evy Kamilah Ratnasari

Abstract — Fruit recognition can be automatically applied to the field of education, industry, sales, as well as science. In the vision of computer recognition of fruit relies on four basic features that describe the characteristics of the fruit, i.e., size, color, shape, and texture. The fruit recognition through the RGB image results of cameras using the features of shape and size are not reliable and effective, because in a real data image can be composed of several different sizes of fruit on each type of fruit so it can't be identified morphologically the fruit size and uniformity that can affect the results of the classification. This journal based on the feature recognition method of building colors and textures for the classification of fruit.The classification is done by K-Nearest Neighbor based on color and texture features co-occurrence. Experimental results of 1882 dataset image of fruit for 12 different classes can recognize the fruit in both color and texture features based with the highest accuracy of 92%.


Author(s):  
Swati Singh ◽  
Sheifali Gupta ◽  
Ankush Tanta ◽  
Rupesh Gupta

This paper proposes a novel algorithm of segmentation of diseased part in apple leaf images. In agriculture-based image processing, leaf diseases segmentation is the main processing task for region of interest extraction. It is also extremely important to segment the plant leaf from the background in case on live images. Automated segmentation of plant leaves from the background is a common challenge in the processing of plant images. Although numerous methods have been proposed, still it is tough to segment the diseased part of the leaf from the live leaf images accurately by one particular method. In the proposed work, leaves of apple having different background have been segmented. Firstly, the leaves have been enhanced by using Brightness-Preserving Dynamic Fuzzy Histogram Equalization technique and then the extraction of diseased apple leaf part is done using a novel extraction algorithm. Real-time plant leaf database is used to validate the proposed approach. The results of the proposed novel methodology give better results when compared to existing segmentation algorithms. From the segmented apple leaves, color and texture features are extracted which are further classified as marsonina coronaria or apple scab using different machine learning classifiers. Best accuracy of 96.4% is achieved using K nearest neighbor classifier.


2020 ◽  
Vol 32 (03) ◽  
pp. 2050017
Author(s):  
Ayat Karrar ◽  
Mai S. Mabrouk ◽  
Manal AbdEl Wahed

Cancers typically are both highly dangerous and common. Among these, lung cancer has one of the lowest survival rates compared to other cancers. CT scans can reveal dense masses of different shapes and sizes; in the lungs, these are called lung nodules. This study applied a computer-aided diagnosis (CAD) system to detect candidate nodules — and diagnose it either solitary or juxtapleural — with equivalent diameters, ranging from 7.78[Formula: see text]mm to 22.48[Formula: see text]mm in a 2D CT slice. Pre-processing and segmentation is a very important step to segment and enhance the CT image. A segmentation and enhancement algorithm is achieved using bilateral filtering, Thresholding the gray-level transformation function, Bounding box and maximum intensity projection. Border artifacts are removed by clearing the lung border, erosion, dilation and superimposing. Feature extraction is done by extracting 20 gray-level co-occurrence matrix features from four directions: [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] and one distance of separation ([Formula: see text] pixel). In the classification step, two classifiers are proposed to classify two types of nodules based on their locations: as juxtapleural or solitary nodules. The two classifiers are a deep learning convolutional neural network (CNN) and the K-nearest neighbor (KNN) algorithm. Random oversampling and 10-fold cross-validation are used to improve the results. In our CAD system, the highest accuracy and sensitivity rates achieved by the CNN were 96% and 95%, respectively, for solitary nodule detection. The highest accuracy and sensitivity rates achieved by the KNN model were 93.8% and 96.7%, respectively, and K was set to 1 to detect juxtapleural nodules.


Author(s):  
Marina Milosevic ◽  
Dragan Jankovic ◽  
Aleksandar Peulic

AbstractIn this paper, we present a system based on feature extraction techniques for detecting abnormal patterns in digital mammograms and thermograms. A comparative study of texture-analysis methods is performed for three image groups: mammograms from the Mammographic Image Analysis Society mammographic database; digital mammograms from the local database; and thermography images of the breast. Also, we present a procedure for the automatic separation of the breast region from the mammograms. Computed features based on gray-level co-occurrence matrices are used to evaluate the effectiveness of textural information possessed by mass regions. A total of 20 texture features are extracted from the region of interest. The ability of feature set in differentiating abnormal from normal tissue is investigated using a support vector machine classifier, Naive Bayes classifier and K-Nearest Neighbor classifier. To evaluate the classification performance, five-fold cross-validation method and receiver operating characteristic analysis was performed.


2017 ◽  
Vol 6 (2) ◽  
pp. 113
Author(s):  
Taftyani Yusuf Prahudaya ◽  
Agus Harjoko

Guava (Psidium guajava L.) is a fruit that has many health benefits. Guava also has commercial value in Indonesia and has a large market share. This indicates that the commodity of guava has been consumed by society extensively. This time the sorting process is still done manually which still has many shortcomings. This classification gives the classification results are less accurate and inconsistent due to the carelessness of humans. Grading process in the marketing sector is essential. Improper grading potentially detrimental to farmers because all the fruit quality were priced the same. Therefore, we need a consistent classification system.The system uses image processing to extract the color and texture features of guava. As a quality classification KNN method (K-Nearest Neighbor) is used. This system will classify guava into four quality classes, namely the super class, class A, class B, and external quality. KNN designed with input 7 features extraction which is the average value of RGB (Red, Green, and Blue), total defect area, and the GLCM value (entropy, homogeneity, and contrast) with the 4 outputs of quality. From the test results showed that the classification method is able to classify the quality of guava. The highest accuracy is obtained in testing K = 3 with 91.25% accuracy rate.


Sign in / Sign up

Export Citation Format

Share Document