scholarly journals Magnetic sensitivity modeling of dual gate MOS transistor

Author(s):  
Mohamed Kessi ◽  
Arezki Benfdila

In this paper, the magnetic field effect on the carrier transport phenomenon in the double gate metal-oxide-semiconductor field-effect transistor (MOSFET) has been investigated. This is done by exploring the Lorentz force and the behavior of a semiconductor subjected to a constant magnetic field. The magnetic field modulates the electrons position and density as well as the potential distribution in the case of silicon tunnel tunneling field-effects (FETs). This modulation impacts the device electrical characteristics such as ON current (I<sub>ON</sub>), subthreshold leakage current (IOF), threshold voltage (V<sub>T</sub>), magneto-transconductance (g<sub>mm</sub>) and output magneto-conductance (gm<sub>DS</sub>). In addition, a hall voltage (V<sub>H</sub>) is induced and modulated by the magnetic field. It has been observed that this voltage influences the effective applied gate voltage. It has been observed that the threshold voltage variations induced by the magnetic field is of paramount importance and affects the device switching properties both speed and power dissipation, noted that the threshold voltage VT and (Ion/Iof) ratio are reduced by 10<sup>-3</sup>V and 10<sup>2</sup> for a magnetic field of ±6 and ±5.5 Tesla, respectively. We have simulated the different behavior in the channel, mainly doping concentration, potential distribution, conduction and valence bands, total current density, total charge density, electric field, electron mobility, and electron velocity.

2004 ◽  
Vol 9 (2) ◽  
pp. 129-138
Author(s):  
J. Kleiza ◽  
V. Kleiza

A method for calculating the values of specific resistivity ρ as well as the product µHB of the Hall mobility and magnetic induction on a conductive sample of an arbitrary geometric configuration with two arbitrary fitted current electrodes of nonzero length and has been proposed an grounded. During the experiment, under the constant value U of voltage and in the absence of the magnetic field effect (B = 0) on the sample, the current intensities I(0), IE(0) are measured as well as the mentioned parameters under the effect of magnetic fields B1, B2 (B1 ≠ B2), i.e.: IE(β(i)), I(β(i)), i = 1, 2. It has been proved that under the constant difference of potentials U and sample thickness d, the parameters I(0), IE(0) and IE(β(i)), I(β(i)), i = 1, 2 uniquely determines the values of the product µHB and specific resistivity ρ of the sample. Basing on the conformal mapping method and Hall’s tensor properties, a relation (a system of nonlinear equations) between the above mentioned quantities has been found.


2013 ◽  
Vol 49 (1-2) ◽  
pp. 237-248
Author(s):  
A. V. Beznosov ◽  
O. O. Novozhilova ◽  
S. Yu. Savinov ◽  
M. V. Yarmonov ◽  
R. E. Alekseev

2021 ◽  
Vol 1037 ◽  
pp. 141-147
Author(s):  
Andrey Minaev ◽  
Juri Korovkin ◽  
Hammat Valiev ◽  
G.V. Stepanov ◽  
Dmitry Yu. Borin

Experimental studies magnetorheological elastomer specimens dynamic properties under the magnetic fields action on the vibrostend are carried out. Amplitude-frequency characteristics have been obtained. The magnetic field effect on the silicone magnetoreactive elastomers deformation properties and damping coefficients experimentally is established.


Entropy ◽  
2011 ◽  
Vol 13 (5) ◽  
pp. 1034-1054 ◽  
Author(s):  
Mounir Bouabid ◽  
Nejib Hidouri ◽  
Mourad Magherbi ◽  
Ammar Ben Brahim

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4731
Author(s):  
Wei-Ren Chen ◽  
Yao-Chuan Tsai ◽  
Po-Jen Shih ◽  
Cheng-Chih Hsu ◽  
Ching-Liang Dai

The fabrication and characterization of a magnetic micro sensor (MMS) with two magnetic field effect transistors (MAGFETs) based on the commercial complementary metal oxide semiconductor (CMOS) process are investigated. The magnetic micro sensor is a three-axis sensing type. The structure of the magnetic microsensor is composed of an x/y-MAGFET and a z-MAGFET. The x/y-MAGFET is employed to sense the magnetic field (MF) in the x- and y-axis, and the z-MAGFET is used to detect the MF in the z-axis. To increase the sensitivity of the magnetic microsensor, gates are introduced into the two MAGFETs. The sensing current of the MAGFET enhances when a bias voltage is applied to the gates. The finite element method software Sentaurus TCAD was used to analyze the MMS’s performance. Experiments show that the MMS has a sensitivity of 182 mV/T in the x-axis MF and a sensitivity of 180 mV/T in the y-axis MF. The sensitivity of the MMS is 27.8 mV/T in the z-axis MF.


Sign in / Sign up

Export Citation Format

Share Document