Text Independent Amharic Language Speaker Identification in Noisy Environments using Speech Processing Techniques
<p>In Ethiopia, the largest ethnic and linguistic groups are the Oromos, Amharas and Tigrayans. This paper presents the performance analysis of text-independent speaker identification system for the Amharic language in noisy environments. VQ (Vector Quantization), GMM (Gaussian Mixture Models), BPNN (Back propagation neural network), MFCC (Mel-frequency cepstrum coefficients), GFCC (Gammatone Frequency Cepstral Coefficients), and a hybrid approach had been use as techniques for identifying speakers of Amharic language in noisy environments. For the identification process, speech signals are collected from different speakers including both sexes; for our data set, a total of 90 speakers’ speech samples were collected, and each speech have 10 seconds duration from each individual. From these speakers, 59.2%, 70.9% and 84.7% accuracy are achieved when VQ, GMM and BPNN are used on the combined feature vector of MFCC and GFCC. </p>