scholarly journals A novel self-tuning fractional order PID control based on optimal model reference adaptive system

Author(s):  
Mohamed Abdelbar Shamseldin ◽  
Mohamed Sallam ◽  
Abdel Halim Bassiuny ◽  
A. M. Abdel Ghany

<span>This paper presents a novel self-tuning fractional order PID (FOPID) control based on optimal Model Reference Adaptive Control (MRAC). The proposed control technique has subjected to a third order system case study (power system load frequency control). The model reference describes the requirements of designer. It can be first or second order system. The parameters of MRAC have obtained using the harmony search (HS) optimization technique to achieve the optimal performance. Sometimes, the tuning of the five parameters of FOPID control online at same moment consumes more calculation time and more processing. So, this study proposes three methods for self-tuning FOPID control. The first method has been implemented to tune the two integral and derivative parameters only and the rest of parameters are fixed. The second method has been designed to adjust the proportional, integral derivative parameters while the other fractional parameters are constant. The last method has developed to adjust the five parameters of FOPID control simultaneously. The simulation results illustrate that the third method of self-tuning FOPID control can accommodate the sudden disturbance compared to other techniques. Also, it can absorb the system uncertainty better than the other control techniques.</span>

Author(s):  
M. A. Abdel Ghany ◽  
Mohamed A. Shamseldin

<p><span lang="EN-US">This paper presents a novel approach of self-tuning for a Modified Fractional Order PID (MFOPID) depends on the Model Reference Adaptive System (MRAS). The proposed self-tuning controller is applied to Power System Stabilizer (PSS). Takaji-Sugeno (TS) fuzzy logic technique is used to construct the MFOPID controller. The objective of MRAS is to update the five parameters of Takaji-Sugeno Modified FOPID (TSMFOPID) controller online. For different operating points of PSS, MRAS is applied to investigate the effectiveness of proposed controllers. The harmony optimization technique used to obtain the optimal parameters of TSMFOPID controllers and MRAS parameters. For different operating points with different disturbance under parameters variations the simulation results are obtained. This is to show that Self-Tuning of TSMFOPID based on (MRAS) have better performance than the fixed parameters TSMOFOPID controller.</span></p>


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3604
Author(s):  
Hady H. Fayek ◽  
Panos Kotsampopoulos

This paper presents load frequency control of the 2021 Egyptian power system, which consists of multi-source electrical power generation, namely, a gas and steam combined cycle, and hydro, wind and photovoltaic power stations. The simulation model includes five generating units considering physical constraints such as generation rate constraints (GRC) and the speed governor dead band. It is assumed that a centralized controller is located at the national control center to regulate the frequency of the grid. Four controllers are applied in this research: PID, fractional-order PID (FOPID), non-linear PID (NPID) and non-linear fractional-order PID (NFOPID), to control the system frequency. The design of each controller is conducted based on the novel tunicate swarm algorithm at each operating condition. The novel method is compared to other widely used optimization techniques. The results show that the tunicate swarm NFOPID controller leads the Egyptian power system to a better performance than the other control schemes. This research also presents a comparison between four methods to self-tune the NFOPID controller at each operating condition.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


Author(s):  
M.Z. Ismail ◽  
M.H.N. Talib ◽  
Z. Ibrahim ◽  
J. Mat Lazi ◽  
Z. Rasin

<span>Fuzzy logic controller (FLC) has shown excellent performance in dealing with the non-linearity and complex dynamic model of the induction motor. However, a conventional constant parameter FLC (CPFL) will not be able to provide–good coverage performance for a wide speed range operation with a single tuning parameter. Therefore, this paper proposed a self tuning mechanism FLC approach by model reference adaptive controller (ST-MRAC) to continuously allow to adjust the parameters. Due to real time hardware application, the dominant rules selection method for simplified rules has been implemented as part of the reducing computational burden. Experiment results validate a good performance of the ST-MRAC compared to the CPFL for the   speed performance in terms of the wide range of operations and disturbance showed remarkable performance.</span>


Sign in / Sign up

Export Citation Format

Share Document