scholarly journals PI controller for DC motor speed realized with simulink and practical measurements

Author(s):  
Mohammed A. Ibrahim ◽  
Ali N. Hamoodi ◽  
Bashar M. Salih

<p>This article describes the methodology of speed control by understanding control method of DC motor, definitely, armature and field resistances with additional to armature voltage control methods. The speed of DC motor is controlled PI controller as donor in this work. Using Matlab simulation and practical measurements, Terco DC motor speed control is achieved in this work. The results that obtained from Matlab simulation circuit is appeared approximately similar that obtained by practical connection.</p><p> </p>

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1126
Author(s):  
Ko ◽  
Park ◽  
Lee

This paper illustrates regenerative battery charging control method of the permanent magnet synchronous motor (PMSM) drive without DC/DC converter. Conventional control methods for battery current and voltage control methods generally use a bidirectional DC/DC converter for regenerative control. The reason to use this DC/DC converter is the DC-Link current ripple of the inverter of is affected by switching of the inverter and the motor speed. This problem causes to use a low pass filter (LPF) for sensing the DC-link current, however, it occurs deteriorating the control performance. In this paper, battery current and voltage control methods using only the motor drive are illustrated. To control the DC-link current, power control is performed using the look-up table (LUT) data that are extracted from the experiment. In addition, an applicable method for the variable DC-link voltage of the proposed regenerative control method is illustrated.


Author(s):  
Khalid Mohammed ◽  
Jabbar A.F. Yahaya ◽  
Reyasudin Basir Khan

This research presents a very important industrial issue of controlling the production target, despite changing loads. Engines of various types, whether synchronous or synchronous, operate on single and three phase AC, DC motors or special motors such as stepper and servo. In all these motors, the speed control of the torque and speed of the above motors has gained considerable importance. There are three main ways reviewed in the current search, the second that completes the previous research referred to in the references. The three methods are PID method, LQR method and feeding –forward control methods. A real DC motor was used in electrical engineering machine laboratory at University of Diyala, Iraq. Where the actual parameters of the DC motor were actually calculated. The practical parameters were then integrated into the three control method Matlab codes for the purpose of comparing the results and representing the motor performance in the indicated control methods.


2011 ◽  
Vol 301-303 ◽  
pp. 1501-1506
Author(s):  
Shuang Zhai ◽  
Deng Hua Li ◽  
Xi Bao Wu ◽  
Cheng Zhe Li

Because the nonlinear and strong coupling characteristics of brushless DC motor, the classical PI controller can not control it easily. In order to solve the control problem of brushless DC motor, an improved control method is proposed which based on passivity-based control technology. According to a model of brushless DC motor (BLDCM) that based on Euler -Lagrange (EL) equation, designed a passivity-based controller. The simulation result shows that,compared with the PI controller,this method can not only improve the dynamic response property and anti-jamming ability of the system, but also get a better speed-adjustability.


1991 ◽  
Vol 32 (3) ◽  
pp. 57-61
Author(s):  
Phasun Kumar Chakravarti

2014 ◽  
Vol 989-994 ◽  
pp. 3172-3176
Author(s):  
Yi Hui Zhang ◽  
Le Peng Song

Brushless DC mo tor speed control system is a multivariate, strong coupling, non linear, time-varying complex system, but adopting traditional PID control method to carry ou t control is difficult to achieve good control effect A kind of PID controller with fuzzy algorithm setting on-line PID parameters automatically was designed and applied in brush less DC motor speed control system, using the voltage , speed and torque equation of brush less DC motor, according to the parameters of the mo tor, the controler adopts fuzzy theory to adjust the PID parameters, in order to obtain high-precision speed control Results of simulation experiment show that the fuzzy PID control method compared with normal PID control is with better control performance, non overshoot quick velocity response, higher control precision and good rubustness, which is insensitive to the parameter chattering and many disturbances.


2015 ◽  
Vol 109 (10) ◽  
pp. 29-35 ◽  
Author(s):  
Ahmed M.Ahmed ◽  
Amr Ali-Eldin ◽  
Mohamed S. Elksasy ◽  
Faiz F. Areed

Author(s):  
Tsolo Georgiev ◽  
Mikho Mikhov

A Sensorless Speed Control System for DC Motor DrivesAn approach to sensorless speed control of permanent magnet DC motor drives is presented in this paper. The motor speed has been estimated indirectly by the respective back EMF voltage. Using a discrete vector-matrix description of the controlled object, an optimal modal state observer has been synthesized, as well as an optimal modal controller. The results obtained show that the applied control method can ensure good performance.


Sign in / Sign up

Export Citation Format

Share Document