Research on Brushless DC Motor Speed Control System Based on Passivity-Based Control

2011 ◽  
Vol 301-303 ◽  
pp. 1501-1506
Author(s):  
Shuang Zhai ◽  
Deng Hua Li ◽  
Xi Bao Wu ◽  
Cheng Zhe Li

Because the nonlinear and strong coupling characteristics of brushless DC motor, the classical PI controller can not control it easily. In order to solve the control problem of brushless DC motor, an improved control method is proposed which based on passivity-based control technology. According to a model of brushless DC motor (BLDCM) that based on Euler -Lagrange (EL) equation, designed a passivity-based controller. The simulation result shows that,compared with the PI controller,this method can not only improve the dynamic response property and anti-jamming ability of the system, but also get a better speed-adjustability.

2015 ◽  
Vol 109 (10) ◽  
pp. 29-35 ◽  
Author(s):  
Ahmed M.Ahmed ◽  
Amr Ali-Eldin ◽  
Mohamed S. Elksasy ◽  
Faiz F. Areed

Jurnal INFORM ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 110-114
Author(s):  
Mochamad Mobed Bachtiar ◽  
Fernando Ardilla ◽  
Muhammad Faiz Hasbi ◽  
Iwan Kurnianto Wibowo

Unmanned Aerial Vehicle (UAV) is an unmanned aircraft system that is no longer a special need but has become a general need for the community, and one example is used to capture everyday moments through photos or videos from the air. Among the models of UAV aircraft is the quadcopter, where there is a flight controller that functions to fly the quadcopter by adjusting the speed of each motor. The flight controller that is often used today is the Pixhawk manufacturer. The Pixhawk module is an integrated system that the factory has provided, so it cannot be modified in terms of control and I/O. This research focuses on making an independent flight controller that can be used to fly a quadcopter. The control method that is implanted is Proportional Integral Derivative or commonly known as PID. The flight controller uses the PID control method to adjust each Brushless DC Motor (BLDC) speed to maintain stability while flying. From the test results, the quadcopter can fly stably with KP parameters of 2.5, KI of 0.6, and KD of 1.0. The response time in processing feedback is 3s.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3989-3993

This research Paper proposes the Brushless DC motors control (BLDC) could accomplish higher execution looking into effectiveness in examination for old brushed DC motor controlling which is difficult to control because it requires a phase for switching circuit. This work proposes a fuzzy logic control for brushless DC motor for axis based on Hall Effect by applying sensor control system and also it produces brushless motor for rearranging the three phase conduction mode model. At long last this paper may be with create efficient control methodologies on enhance driving dynamics on the mechanical dynamic consider of propulsion method. The recommended control method stabilizes those controls services (speeds) done by controller of brushless DC motor drive (BLDC). On behalf of settling 2 wheels also physical favorable circumstances of BLDC motors are associated straight forwardly of the tires by improving the rotor speed. The parameters such as power factor, rotor speed, torque ripple, EMF is compensated & simulation results are tabulated.


Author(s):  
Mohd Syakir Adli ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Siti Fauziah Toha Tohara

<p>This paper presents a control scheme for speed control system in brushless dc (BLDC) motor to be utilized for electric motorbike. While conventional motorbikes require engine and fuel, electric motorbikes require DC motor and battery pack in order to be powered up. The limitation with battery pack is that it will need to be recharged after a certain period and distance. As the recharging process is time consuming, a PID controller is designed to maintain the speed of the motor at its optimum state, thus ensuring a longer lasting battery time (until the next charge). The controller is designed to track variations of speed references and stabilizes the output speed accordingly. The simulation results conducted in MATLAB/SIMULINK® shows that the motor, equipped with the PID controller was able to track the reference speed in 7.8x10<sup>-2</sup> milliseconds with no overshoot.  The result shows optimistic possibility that the proposed controller can be used to maintain the speed of the motor at its optimum speed.</p>


2013 ◽  
Vol 336-338 ◽  
pp. 728-733
Author(s):  
Xi Zhu ◽  
Jian Guo Song ◽  
Qing Lu Zhang

In order to drive beam-pumping unit with brushless DC motor (BLDCM), a kind of motor speed regulator was investigated. When pumping unit is in up stroke, BLDCM is power-driven; when in down stoke, pumping unit is braked by BLDCM. To meet the operation mode, PI double closed loops control strategy and Pulse Width Modulation (PWM) are applied. Simulation and test in field show that our design has good control effect and popularizing value.


Sign in / Sign up

Export Citation Format

Share Document