scholarly journals Fuzzy logic controller for closed loop cascaded flyback converter fed PMDC-motor system

Author(s):  
C.T. Manikandan ◽  
G.T. Sundarrajan

This paper displays a Fly Back Converter idea to straightforwardly incorporate cascaded flyback converter. The flyback-converter finds a way between DC-source and DC Motor-load. This work covenants with the modeling, simulation, and application of a Fuzzy Logic controlled (FLC) - Cascaded Fly back Converter (CFLB) system. This work recommends FLC to control Parallel cascaded fly-back converter to fabricate essential DC voltage from the input supply voltage. The yield of CFLB is controlled utilizing closed loop configuration. Closed loop PI & Fuzzy logic controlled CFLB systems are simulated and their results are related. The outcomes signify that the FLC based system gave a superior response than the P.I. controlled CFLB system. The FLC controlled CFLB system has benefits like decreased steady state error and enhanced time domain-response.

Author(s):  
K. Sasikala ◽  
R. Krishna Kumar

<p>This work compacts with the modeling, simulation, and application of a Fractional Order Proportional Integral Differential (FOP-I-D) controlled Cascaded Flyback Switched Mode Power Supply (CFSMPS) system. It recommends Parallel cascaded flyback converter for the production of essential DC voltage from the input supply voltage. The output from CFSMPS is regulated by using closed loop configuration. The simulation of Closed-loop Proportional-Integral (PI) and FOP-I-D controlled CFSMPS system has been done and the results of the systems are related. The outcomes signify that the FOP-I-D based system has presented an enhanced response to represent as similar to the PI controlled CFSMPS system. The FOP-I-D controlled CFSMPS system has benefits like decreased steady-state error and enhanced time-domain response.</p>


2021 ◽  
Vol 13 (18) ◽  
pp. 10216
Author(s):  
Youcef Belkhier ◽  
Nasim Ullah ◽  
Ahmad Aziz Al Alahmadi

Permanent magnet synchronous generator (PMSG) with a back-to-back power converter is one of the commonly used technologies in tidal power generation schemes. However, the nonlinear dynamics and time-varying parameters of this kind of conversion system make the controller computation a challenging task. In the present paper, a novel intelligent control method based on the passivity concept with a simple structure is proposed. This proposed strategy consists of passivity-based speed control (PBSC) combined with a fuzzy logic method to address the robustness problems faced by conventional control techniques such as proportional-integral (PI) control. The proposed method extracts the maximum power from the tidal energy, compensates for the uncertainty in a damped way where the entire dynamics of the PMSG are considered when designing the control law. The fuzzy logic controller is selected, which makes the proposed strategy intelligent to compute the damping gains to make the closed-loop passive and approximate the unstructured dynamics of the PMSG. Thus, the robustness property of the closed-loop system is considerably increased. The regulation of DC voltage and reactive power to their desired values are the principal objectives of the present work. The proposed method is used to control the machine-side converter (MSC), while a conventional PI method is adopted to control the grid-side converter (GSC). Dynamic simulations show that the DC voltage and reactive power errors are extremely reduced with the proposed strategy; ±0.002 for the DC-link voltage and ±0.000015 in the case of the reactive power. Moreover, the lowest steady-state error and better convergence criterion are shown by the proposed control (0.3 × 10−3 s). Generally, the proposed candidate offers high robustness, fast speed convergence, and high efficiency over the other benchmark nonlinear strategies. Moreover, the proposed controller was also validated in a processor in the loop (PIL) experiment using Texas Instruments (TI) Launchpad.


Author(s):  
Shaik Gousia Begum ◽  
Syed Sarfaraz Nawaz ◽  
G. Sai Anjaneyulu

This paper presents the design of a Fuzzy logic controller for a DC-DC step-down converter. Buck converters are step-down regulated converters which convert the DC voltage into a lower level standardized DC voltage. The buck converters are used in solar chargers, battery chargers, quadcopters, industrial and traction motor controllers in automobile industries etc. The major drawback in buck converter is that when input voltage and load change, the output voltage also changes which reduces the overall efficiency of the Buck converter. So here we are using a fuzzy logic controller which responds quickly for perturbations, compared to a linear controllers like P, PI, PID controllers. The Fuzzy logic controllers have become popular in designing control application like washing machine, transmission control, because of their simplicity, low cost and adaptability to complex systems without mathematical modeling So we are implementing a fuzzy logic controller for buck converter which maintains fixed output voltage even when there are fluctuations in supply voltage and load. The fuzzy logic controller for the DC-DC Buck converter is simulated using MATLAB/SIMULINK. The proposed approach is implemented on DC-DC step down converter for an input of 230V and we get the desired output for variations in load or references. This proposed system increases the overall efficiency of the buck converter.


Author(s):  
R.Samuel Rajesh Babu

<div class="Section1"><p class="papertitle">This paper presents a comparative analysis of Integrated boost flyback converter for Renewable energy System. IBFC is the combination of boost converter and fly back converter. The proposed converter is simulated in open and closed loop using PID and FUZZY controller. The Fuzzy Logic Controller (FLC) is used reduce the rise time, settling time to almost negligible and try to remove the delay time and inverted response. The performance of IBFC with fuzzy logic controller  is found better instead of PID controller. The simulation results are verified experimentally and  the output of converter is free from ripples and has regulated output voltage.</p></div>


Author(s):  
Habibullah Salim ◽  
Irma Husnaini ◽  
Asnil Asnil

This research aims to make buck converter prototype for PLTS system by using fuzzy logic controller. Buck converter is required in the PLTS system if the required unidirectional voltage is smaller than the output voltage of the solar cell. Buck converter used to convert 24 Volt dc voltage to 12 Volt dc with 60 watt capability. While fuzzy logic controller is used to improve buck converter performance based on pulse generation technique for switching. The application of fuzzy logic method is expected to improve the performance of the system by maintaining the stability of buck converter output voltage of 12 volts and reduce the output ripple value. Atmega8535 microcontroller is used to generate PWM pulses for switching on power circuits. The results obtained from the test using a 100 Ohm 5 Watt load obtained the buck converter output voltage of 12.4 Volt.


Author(s):  
Amjed A. Al-mousa ◽  
Ali H. Nayfeh ◽  
Pushkin Kachroo

Abstract Rotary cranes (tower cranes) are common industrial structures that are used in building construction, factories, and harbors. These cranes are usually operated manually. With the size of these cranes becoming larger and the motion expected to be faster, the process of controlling them became difficult without using automatic control methods. In general, the movement of cranes has no prescribed path. Cranes have to be run under different operating conditions, which makes closed-loop control preferable. In this work a fuzzy logic controller is introduced with the idea of split-horizon; that is, fuzzy inference engines (FIE) are used for tracking the position and others are used for damping the load oscillations. The controller consists of two independent controllers: radial and rotational. Each of these controllers has two fuzzy inference engines (FTEs). Computer simulations are used to verify the performance of the controller. Three simulation cases are introduced: radial, compound, and damping. The results from the simulations show that the fuzzy controller is capable of keeping the load-oscillation angles small throughout the maneuvers while completing them in a relatively reasonable time.


2017 ◽  
Vol 7 (1.2) ◽  
pp. 186 ◽  
Author(s):  
S. Muthu Balaji ◽  
R. Anand ◽  
P. Senthil Pandian

High voltage gain dc-dc converters plays an major role in many modern industrialized applications like PV and fuel cells, electrical vehicles, dc backup systems (UPS, inverter), HID (high intensity discharge) lamps. As usual boost converter experiences a drawback of obtaining a high voltage at maximum duty cycle. Hence in order to increase the voltage gain of boost converter, this paper discusses about the advanced boost converter using solar power application. By using this technique, boost converter attains a high voltage which is ten times greater than the input supply voltage. The output voltage can be further increased to more than ten times the supply voltage by using a parallel capacitor and a coupled inductor. The voltage stress across the switch can be reduced due to high output voltage. The Converter is initially operated in open loop and then it is connected with closed loop. More over the fuzzy logic controller is used for the ripple reduction.


Sign in / Sign up

Export Citation Format

Share Document