scholarly journals Augmented robust T-S fuzzy control based PMSG wind turbine improved with H∞ performance

Author(s):  
Naoual Tidjani ◽  
Abderrezak Guessoum

<p>In this paper, an improved augmented Takagi-Sugeno fuzzy control design applied to the system of converting wind turbine energy was proposed. The wind generator used is based on a permanent magnet synchronous wind power generator (PMSG) under varying operation of the wind speed. The proposed T-S fuzzy control strategy aims to maximize wind energy in low wind speed. A part of our contribution lies in the limitation of the power output of the wind generator in high wind speed. Through the concept of the virtual desired variables, the design of the output tracking controller is achieved. In light of this concept, the developed T-S fuzzy control was designed via parallel-distributed compensation (PDC) approach with H<sub>∞</sub> performance.</p><p>Sufficient conditions for the stability of the closed-loop system affected by external disturbances are proved from Lyapunov’s direct method and the feedback gains of the controller strategy are determined by linear matrix inequalities (LMIs) tools. Another contribution is in showing the robustness of the Takagi-Sugeno based control strategy, with a focus on a set of system parameters with model uncertainties. The simulation results show the high performance of the proposed controller strategy for a 5MW (PMSG) obtained through simulation.</p>

2011 ◽  
Vol 20 (08) ◽  
pp. 1571-1589 ◽  
Author(s):  
K. H. TSENG ◽  
J. S. H. TSAI ◽  
C. Y. LU

This paper deals with the problem of globally delay-dependent robust stabilization for Takagi–Sugeno (T–S) fuzzy neural network with time delays and uncertain parameters. The time delays comprise discrete and distributed interval time-varying delays and the uncertain parameters are norm-bounded. Based on Lyapunov–Krasovskii functional approach and linear matrix inequality technique, delay-dependent sufficient conditions are derived for ensuring the exponential stability for the closed-loop fuzzy control system. An important feature of the result is that all the stability conditions are dependent on the upper and lower bounds of the delays, which is made possible by using the proposed techniques for achieving delay dependence. Another feature of the results lies in that involves fewer matrix variables. Two illustrative examples are exploited in order to illustrate the effectiveness of the proposed design methods.


2019 ◽  
Vol 26 (9-10) ◽  
pp. 643-645
Author(s):  
Xuefeng Zhang

This article shows that sufficient conditions of Theorems 1–3 and the conclusions of Lemmas 1–2 for Takasi–Sugeno fuzzy model–based fractional order systems in the study “Takagi–Sugeno fuzzy control for a wide class of fractional order chaotic systems with uncertain parameters via linear matrix inequality” do not hold as asserted by the authors. The reason analysis is discussed in detail. Counterexamples are given to validate the conclusion.


2020 ◽  
Vol 42 (15) ◽  
pp. 2969-2983
Author(s):  
Vimala Kumari Jonnalagadda ◽  
Vinodh Kumar Elumalai ◽  
Harvir Singh ◽  
Amit Prasad

This paper presents the Takagi-Sugeno (TS) fuzzy control design for nonlinear stabilization and tracking control of a ball on plate system. To deal with the plant nonlinearity and the fuzzy convergence issue, we formulate the parallel distributed compensator (PDC) TS fuzzy model to characterize the global behaviour of the nonlinear system and synthesize a feasible control framework using a velocity compensation scheme. The nonlinear dynamics of the ball on plate system is obtained using the Euler-Lagrangian energy based approach. To identify the moving objects in the video stream, a background subtraction algorithm using thresholding technique is formulated. Moreover, the stability analysis of the TS fuzzy control is reduced to linear matrix inequality (LMI) problem and solved using the Lyapunov direct method. The potential benefits of the proposed control structure for real time test cases are experimentally assessed using hardware in loop (HIL) testing on a ball on plate system. Experimental results substantiate that the TS fuzzy scheme can significantly improve not only the tracking performance but also the robustness of the closed loop system.


2020 ◽  
Vol 2020 ◽  
pp. 1-28
Author(s):  
Márcio Roberto Covacic ◽  
Marcelo Carvalho Minhoto Teixeira ◽  
Aparecido Augusto de Carvalho ◽  
Rodrigo Cardim ◽  
Edvaldo Assunção ◽  
...  

This manuscript presents a Takagi–Sugeno fuzzy control for a mathematical model of the knee position of paraplegic patients using functional electrical stimulation (FES). Each local model of the fuzzy system is represented considering norm-bounded uncertainties. After obtaining the model of FES with norm-bounded uncertainties, the fuzzy control strategy is designed through the solution of linear matrix inequalities (LMIs) using the conditions available in the literature, which consider these norm-bounded uncertainties. The strategy considers decay rate and constraints on the input signal. The model is simulated in the Matlab environment using the numerical parameters measured by experimental tests from a paraplegic patient.


2019 ◽  
Vol 11 (14) ◽  
pp. 3855 ◽  
Author(s):  
Chiu ◽  
Peng

In this study, a novelty dual Takagi-Sugeno (TS) fuzzy control scheme (DTSFCS) is proposed for real world system control. We propose using a ball robot (BR) system control problem, where the BR has the ability to move omnidirectionally. The proposed control scheme combines two fuzzy control approaches for a BR. In this fuzzy control approach, the TS fuzzy model was adopted for the fuzzy modeling of the BR. The concept of parallel distributed compensation (PDC) was utilized to develop a fuzzy control scheme from the TS fuzzy models. The linear matrix inequalities (LMIs) can formulate sufficient conditions. Moreover, in this study, the motors of the BR were mounted on two orthogonal axes. Then, the dual TS fuzzy controller was designed to independently operate without coupling. Finally, the efficiency of the proposed control scheme is illustrated by the experimental and simulation results that are presented in this study.


2021 ◽  
pp. 107754632110069
Author(s):  
Parvin Mahmoudabadi ◽  
Mahsan Tavakoli-Kakhki

In this article, a Takagi–Sugeno fuzzy model is applied to deal with the problem of observer-based control design for nonlinear time-delayed systems with fractional-order [Formula: see text]. By applying the Lyapunov–Krasovskii method, a fuzzy observer–based controller is established to stabilize the time-delayed fractional-order Takagi–Sugeno fuzzy model. Also, the problem of disturbance rejection for the addressed systems is studied via the state-feedback method in the form of a parallel distributed compensation approach. Furthermore, sufficient conditions for the existence of state-feedback gains and observer gains are achieved in the terms of linear matrix inequalities. Finally, two numerical examples are simulated for the validation of the presented methods.


Sign in / Sign up

Export Citation Format

Share Document