scholarly journals Wireless Gesture Controlled Semi-Humanoid Robot

Author(s):  
Toshika Fegade ◽  
Yogesh Kurle ◽  
Sagar Nikale ◽  
Praful Kalpund

<p>Robotics is a field concerned with the “intelligent connection of perception of action”. The most common manufacturing robot is the robotic arm with different degree of freedoms. Today, these humanoids perform many functions to assist humans in different undertakings such as space missions, driving and monitoring high speed vehicles. They are called semi-humanoids because they resemble to upper part of human body.</p><p>        The idea of this paper is to change perception of controlling robotic arm. This paper provides a way to get rid of old fashioned remote controls and gives an intuitive technique for implementation of Semi-Humanoid Gesture controlled robot. It includes two robot arms which are exactly similar to human arm (5 fingers) increasing sensitivity of the system. It includes motion sensors -flex and accelerometer (used in mobile phones for tilting motion). The system design is divided into 3 parts namely: Robotic Arm, Real time video and Platform.</p>        The prime aim of the design is that the robot arm and platform starts the movement as soon as the operator makes hand and leg gesture. The Robotic arm is synchronized with the gestures (hand postures) of the operator and the platform part is controlled by the leg gestures of the operator.  The robot and the Gesture device are connected wireless via RF. The wireless communication enables user to interact with the robot in an effortless way.

2018 ◽  
Vol 15 (06) ◽  
pp. 1850026 ◽  
Author(s):  
Meng Li ◽  
Weizhong Guo ◽  
Rongfu Lin ◽  
Changzheng Wu ◽  
Liangliang Han

The aim of this paper is trying to propose an efficient method of inverse kinematics and motion generation for redundant humanoid robot arm based on the intrinsic principles of human arm motion. The intrinsic principle analysis takes into account both the skeletal kinematics and muscle strength properties. Firstly, this work analyzed the kinematic redundancy problem of a human arm. By analyzing the biological feature of a human arm, the kinematic redundancy boils down to the uncertainty of elbow position. Secondly, because the muscle’s kinematic and strength properties are critical for simulating biometric motion authentically, the muscle strength property was introduced as the criterion for configuration identification and motion generation. Three types of limb configuration, dog walking, gecko climbing, and human walking limb configuration were analyzed, and two geometrical configuration identification rules were deduced to generate biomimetic motion for humanoid robotic arms. By comparing the proposed method with other five IK methods, the proposed method significantly deduced the computing time. Finally, the configuration identification rules were used to generate motions for a 7-DoF humanoid robotic arm. The results showed that the biological rules can generate biomimetic, smooth arm motions for a redundant humanoid robotic arm.


2018 ◽  
Vol 3 (3) ◽  
pp. 1727-1734 ◽  
Author(s):  
Shotaro Mori ◽  
Kazutoshi Tanaka ◽  
Satoshi Nishikawa ◽  
Ryuma Niiyama ◽  
Yasuo Kuniyoshi
Keyword(s):  

Author(s):  
T. C. Yih ◽  
Madhu V. Shurpali ◽  
Sankar Pemmaraju

This paper is concerned with the development of an anthropometric robot arm for the humanoid robot – Tyche. The design was based on physiology and anthropometry of the human arm. The Tyche-arm uses a skew-pantograph mechanism, as the control device, that helps in magnifying the input. The link lengths of the structure are determined based on topological studies and avoidance of the singularity condition. A fault tolerant design for the linear actuator is incorporated in the design. The kinematic and dynamic analyses of the Tyche-arm are performed on the weight lifting activity, with the upper arm fixed in five different positions. The kinematic parameters, axial forces in the links and the torques for each joint are obtained and plotted with respect to time.


2019 ◽  
Vol 4 (4) ◽  
pp. 3601-3608 ◽  
Author(s):  
Shotaro Mori ◽  
Kazutoshi Tanaka ◽  
Satoshi Nishikawa ◽  
Ryuma Niiyama ◽  
Yasuo Kuniyoshi
Keyword(s):  

2020 ◽  
Vol 39 (14) ◽  
pp. 1796-1811 ◽  
Author(s):  
Domenico Mura ◽  
Espen Knoop ◽  
Manuel G Catalano ◽  
Giorgio Grioli ◽  
Moritz Bächer ◽  
...  

This article presents a system for soft human–robot handshaking, using a soft robot hand in conjunction with a lightweight and impedance-controlled robot arm. Using this system, we study how different factors influence the perceived naturalness, and give the robot different personality traits. Capitalizing on recent findings regarding handshake grasp force regulation, and on studies of the impedance control of the human arm, we investigate the role of arm stiffness as well as the kinesthetic synchronization of human and robot arm motions during the handshake. The system is implemented using a lightweight anthropomorphic arm, with a Pisa/IIT Softhand wearing a sensorized silicone glove as the end-effector. The robotic arm is impedance-controlled, and its stiffness changes according to different laws under investigation. An internal observer is employed to synchronize the human and robot arm motions. Thus, we simulate both active and passive behavior of the robotic arm during the interaction. Using the system, studies are conducted where 20 participants are asked to interact with the robot, and then rate the perceived quality of the interaction using Likert scales. Our results show that the control of the robotic arm kinesthetic behavior does have an effect on the interaction with the robot, in term of its perceived personality traits, responsiveness, and human-likeness. Our results pave the way towards robotic systems that are capable of performing human–robot interactions in a more human-like manner, and with personality.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Da-song Zhang ◽  
Rong Xiong ◽  
Jun Wu ◽  
Jian Chu

Based on the 6D constraints of momentum change rate (CMCR), this paper puts forward a real-time and full balance maintenance method for the humanoid robot during high-speed movement of its 7-DOF arm. First, the total momentum formula for the robot’s two arms is given and the momentum change rate is defined by the time derivative of the total momentum. The author also illustrates the idea of full balance maintenance and analyzes the physical meaning of 6D CMCR and its fundamental relation to full balance maintenance. Moreover, discretization and optimization solution of CMCR has been provided with the motion constraint of the auxiliary arm’s joint, and the solving algorithm is optimized. The simulation results have shown the validity and generality of the proposed method on the full balance maintenance in the 6 DOFs of the robot body under 6D CMCR. This method ensures 6D dynamics balance performance and increases abundant ZMP stability margin. The resulting motion of the auxiliary arm has large abundance in joint space, and the angular velocity and the angular acceleration of these joints lie within the predefined limits. The proposed algorithm also has good real-time performance.


Author(s):  
Shotaro MORI ◽  
Kazutoshi TANAKA ◽  
Satoshi NISHIKAWA ◽  
Ryuma NIIYAMA ◽  
Yasuo KUNIYOSHI
Keyword(s):  

2014 ◽  
Vol 984-985 ◽  
pp. 1245-1252 ◽  
Author(s):  
Jayabalan Sudharsan ◽  
L. Karunamoorthy

Designing a humanoid robot is a complex issue and the exact resemblance of human arm movements has not been achieved in many of the previously developed robots. This paper is going to be much focused on the design of a humanoid robot arm which has a unique approach which has never been developed earlier. Even though all the robots that have been developed using 6-Degrees of Freedom (DOF) and 7-DOF can reach any point in the space, some of the orientation cannot be reached by the end effector plane effectively. So an 8-DOF freedom based robotic arm has been specially designed and developed to resemble the exact movements of the human being. This robot has 3-DOF for shoulder joint, 2-DOF for the elbow joint, and 3-DOF for the wrist with fingers as the end effector. Almost all the robots have only 1-DOF to the elbow joint but here 2-DOF has been proposed to resemble the exact movements of the human being (2-DOF at elbow) to solve the above mentioned problem. Literature reviews and design model are discussed in detail to support the proposal that has been made. Forward and inverse Kinematic relationships are also obtained for the joint link parameter. This humanoid robot arm which has been designed and developed is one of the modules of a human size humanoid robot RALA (Robot based on Autonomous Learning Algorithm).


Sign in / Sign up

Export Citation Format

Share Document