A Reference Compensation Current Control strategy for Grid-Connected Inverter of Three-Phase Distributed Generators

Author(s):  
Yunqing Zhang ◽  
Shaoru Zhang ◽  
Pingjun Wang ◽  
Lijun Wang ◽  
Ruiye Zhang ◽  
...  
2021 ◽  
Vol 11 (7) ◽  
pp. 3170
Author(s):  
Yahui Li ◽  
Jing Zhang ◽  
Zhenghang Hao ◽  
Peng Tian

Aiming at the problem of power coupling and complicated decoupling in the d-q coordinate system of a three-phase grid-connected inverter, a current closed-loop control strategy based on an improved QPIR (quasi-proportional integral resonant) controller in the α-β two-phase static coordinate system is proposed. Firstly, the mathematical model of an LCL three-phase grid-connected inverter is established, and its instantaneous power calculation equation is deduced. Secondly, the frequency method is applied to compare and analyze the proportional resonant, quasi-proportional resonant, and improved current controller, and the appropriate improved controller parameters are obtained according to the traditional proportional integral controller parameter design method and the weight coefficient. Finally, the improved controller is compared with the traditional controller in the simulation model of the LCL three-phase grid-connected inverter based on active damping. The results show that the proposed improved current control strategy has good dynamic response characteristics, can realize the non-static error control of grid-connected current, and realizes the decoupling control of active power and reactive power when the load jumps. At the same time, the results also prove the superiority of the proposed control strategy and verify its effectiveness.


2012 ◽  
Vol 614-615 ◽  
pp. 1578-1582
Author(s):  
Chun Qing Qi ◽  
Yi Ruan ◽  
Feng Wen Cao

This paper proposes a control strategy,based on the grid voltage oriented vector control (VOC), which makes three-phase inverter control the active and reactive power of grid-connected inverter under the premise of the direct current control. This paper analyzes the principle of three phase photovoltaic grid connected inverter and describes the control structure of the inverter. The control strategy can overcome the deficiencies of the indirect current control scheme. This paper designs the current closed-loop control system, which not only improve the system dynamic response speed and output current waveform quality, while also reduce its sensitivity to parameter changes to improve the robustness of the system. The simulation results show the validity of control strategy proposed.


2011 ◽  
Vol 347-353 ◽  
pp. 591-600
Author(s):  
Nguyen Viet Ngu ◽  
Hong Hua Wang ◽  
Le Thi Minh Tam

The control objective of three-phase photovoltaic (PV) grid-connected inverter is to generate high quality and stable AC sinusoidal output power with the same phase angle, frequency and amplitude compatible with the grid-connected voltage. To overcome the shortcoming of the normal current PWM control method and traditional PI algorithm, this paper researches a combined control strategy of three phase PV grid-connected inverter based on fuzzy PI controller. The combined control strategy switches different PWM current control method among the hysteretic PWM, SVPWM, hysteretic current SVPWM according to the error between command current and feedback current,and the d-axis command current is output of fuzzy PI controller of DC bus voltage. The simulation model of the combined control strategy for three phase PV grid-connected inverter based on normal PI controller is built with Matlab, simulation results verified the combination control strategy based on fuzzy PI controller has excellent performances.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 876-888
Author(s):  
Yuanbin He ◽  
Bangchao Wang ◽  
Xiaogao Xie ◽  
Lei Shen ◽  
Pingliang Zeng

2013 ◽  
Vol 732-733 ◽  
pp. 1261-1264
Author(s):  
Zhi Lei Yao ◽  
Lan Xiao ◽  
Jing Xu

An improved control strategy for three-phase grid-connected inverters with space vector pulse width modulation (SVPWM) is proposed. When the grid current contains harmonics, the d-and q-axes grid currents is interacted in the traditional control method, and the waveform quality of the grid current is poor. As the reference output voltage cannot directly reflect the change of the reference grid current with the traditional control strategy, the dynamic response of the grid-connected inverter is slow. In order to solve the aforementioned problems, the d-and q-axes grid currents in the decoupled components of the grid current controller are substituted by the d-and q-axes reference grid currents, respectively. The operating principles of the traditional and proposed control methods are illustrated. Experimental results show that the grid-connected inverter with the improved control strategy has high waveform quality of the grid current and fast dynamic response.


Author(s):  
Anmar Kh. Ali ◽  
Riyadh G. Omar

In this, work the finite control set (FCS) model predictive direct current control strategy with constraints, is applied to drive three-phase induction motor (IM) using the well-known field-oriented control. As a modern algorithm approach of control, this kind of algorithm decides the suitable switching combination that brings the error between the desired command currents and the predicated currents, as low as possible, according to the process of optimization. The suggested algorithm simulates the constraints of maximum allowable current and the accepted deviation, between the desired command and actual currents. The new constraints produce an improvement in system performance, with the predefined error threshold. This can be applied by avoiding the switching combination that exceeds the limited values. The additional constraints are more suitable for loads that require minimum distortion in harmonic and offer protection from maximum allowable currents. This approach is valuable especially in electrical vehicle (EV) applications since its result offers more reliable system performance with low total harmonics distortion (THD), low motor torque ripple, and better speed tracking.


Sign in / Sign up

Export Citation Format

Share Document