Fluorescent proteins and fluorescence resonance energy transfer (FRET) as tools in signaling research

2007 ◽  
Vol 97 (03) ◽  
pp. 378-384 ◽  
Author(s):  
Andreas Birbach ◽  
Johannes Schmid

SummaryThe advent of fluorescent proteins has revolutionized signaling research, shifting focus from biochemical assays to analysis of live cells, organized tissues and even entire organisms. Modern applications of fluorescent proteins go beyond their use as specific markers of cells or tissues, allowing the researcher to visualize intracellular translocations as well as biochemical reactions. In this mini-review, we summarize the properties of a variety of fluorescent proteins, their detection using fluorescence microscopy and flow analysis, as well as their basic and more advanced applications, including fluorescence resonance energy transfer (FRET) to study signaling dynamics.

2015 ◽  
Vol 20 (8) ◽  
pp. 086011 ◽  
Author(s):  
Lili Zhang ◽  
Guiqi Qin ◽  
Liuying Chai ◽  
Jiang Zhang ◽  
Fangfang Yang ◽  
...  

2004 ◽  
Vol 381 (1) ◽  
pp. 307-312 ◽  
Author(s):  
Satoshi KARASAWA ◽  
Toshio ARAKI ◽  
Takeharu NAGAI ◽  
Hideaki MIZUNO ◽  
Atsushi MIYAWAKI

GFP (green fluorescent protein)-based FRET (fluorescence resonance energy transfer) technology has facilitated the exploration of the spatio-temporal patterns of cellular signalling. While most studies have used cyan- and yellow-emitting FPs (fluorescent proteins) as FRET donors and acceptors respectively, this pair of proteins suffers from problems of pH-sensitivity and bleeding between channels. In the present paper, we demonstrate the use of an alternative additional donor/acceptor pair. We have cloned two genes encoding FPs from stony corals. We isolated a cyan-emitting FP from Acropara sp., whose tentacles exhibit cyan coloration. Similar to GFP from Renilla reniformis, the cyan FP forms a tight dimeric complex. We also discovered an orange-emitting FP from Fungia concinna. As the orange FP exists in a complex oligomeric structure, we converted this protein into a monomeric form through the introduction of three amino acid substitutions, recently reported to be effective for converting DsRed into a monomer (Clontech). We used the cyan FP and monomeric orange FP as a donor/acceptor pair to monitor the activity of caspase 3 during apoptosis. Due to the close spectral overlap of the donor emission and acceptor absorption (a large Förster distance), substantial pH-resistance of the donor fluorescence quantum yield and the acceptor absorbance, as well as good separation of the donor and acceptor signals, the new pair can be used for more effective quantitative FRET imaging.


2000 ◽  
Vol 6 (S2) ◽  
pp. 828-829
Author(s):  
M. L. Ruehr ◽  
D. S. Damron ◽  
M. Bond

The clustering of components of a signaling pathway at a specific subcellular location raises the local concentration of the appropriate messengers and serves to amplify the signal. The cAMP dependent-protein kinase (PKA) pathway is regulated by compartmentalization of its components. A-kinase anchoring proteins (AKAPs) tether PKA to specific subcellular sites, thus presumably increasing substrate specificity. Phosphorylation of the type II regulatory subunit of PKA (RII) increases its affinity for AKAPs in vitro (1). The purpose of this study was to investigate whether altering the phosphorylation state of RII in live cells changes its affinity for an AKAP. Specifically, we investigated the binding kinetics between Ht31, a peptide containing the PKA binding portion of an AKAP from human thyroid (2), and RII, in response to PKA activators or inhibitors.Fluorescence resonance energy transfer (FRET) was used to monitor binding events between RII and the catalytic subunit (C) of PKA, Ht31, or Ht31P, a mutated form of Ht31 which does not bind RII.


Sign in / Sign up

Export Citation Format

Share Document