Stimulated in vivo synthesis of plasminogen activator inhibitor-1 in human adipose tissue

2012 ◽  
Vol 108 (09) ◽  
pp. 485-492 ◽  
Author(s):  
Jan Liska ◽  
Per Eriksson ◽  
Eva Sverremark-Ekström ◽  
Per Tornvall ◽  
Mattias Ekström

SummaryPlasminogen activator inhibitor type-1 (PAI-1) is one of the most important inhibitors of endogenous fibrinolysis. Adipose tissue is a suggested source of the elevated plasma levels of PAI-1 in obesity. The relation between PAI-1 and inflammation is of particular interest, but current knowledge regarding regulation of PAI-1 in adipose tissue is mainly based on animal studies or ex vivo experiments on human cultured adipocytes. So far, no study has described stimulated gene expression and protein synthesis of PAI-1 in vivo in human adipose tissue. We used open heart surgery as a model of acute systemic inflammation. Twenty-two male patients underwent blood sampling and omental and subcutaneous adipose tissue biopsies for gene expression studies before and after surgery. Expression and localisation of PAI-1 antigen was evaluated by immunohistochemistry. After surgery gene expression of PAI-1 increased 27-fold in omental adipose tissue and three-fold in subcutaneous adipose tissue, but no differences were found in tissue-type plasminogen activator (t-PA) mRNA. PAI-1 antigen was localised within endothelial cells and in the adipose tissue interstitium close to vessels. The upregulated gene expression and protein synthesis in adipose tissue was followed by increased concentrations of PAI-1 antigen in plasma. In conclusion, we present for the first time that an acute systemic inflammation in humans increased gene expression and protein synthesis of PAI-1 in adipose tissue and that this increase was most prominent in omental adipose tissue. PAI-1 synthesis in adipose tissue due to acute systemic inflammation may be a link between inflammation and impaired endogenous fibrinolysis.

2006 ◽  
Vol 95 (01) ◽  
pp. 174-181 ◽  
Author(s):  
Fabrizio Semeraro ◽  
Gabor Voros ◽  
Désiré Collen ◽  
H. Lijnen

SummaryHypoxia in rodents and humans is associated with a reduction of body fat on the one hand, and with enhanced expression of plasminogen activator inhibitor-1 (PAI-1), the main inhibitor of the fibrinolytic system, on the other hand. It was the objective of this study to investigate whether impairment of adipose tissue development by hypoxia may be mediated by PAI-1. Five week old male wild-type (WT) C57Bl/6 mice were fed a standard (SFD) or high fat (HFD) diet and kept under normoxic or hypoxic (10% O2) conditions. In addition, PAI-1 deficient mice and WT littermates were kept on HFD under normoxia or hypoxia. In vitro, the effect of hypoxia (2% O2) was investigated on differentiation of 3T3-L1 cells into adipocytes. Hypoxia induced a significant reduction of weight gain in WT mice on either SFD or HFD, accompanied by lower weights of subcutaneous (SC) and gonadal (GON) fat. Under hypoxic conditions, adipocytes in the adipose tissues were significantly smaller, whereas blood vessel size and density were larger. Serum PAI-1 levels were enhanced in hypoxic mice on SFD but not on HFD, and overall did not correlate with the observed changes in adipose tissue composition. Furthermore, the effects of hypoxia on adipose tissue in mice on HFD were not affected by deficiency of PAI-1. The inhibiting effect of hypoxia on in vitro preadipocyte differentiation was not mediated by PAI-1 activity. In conclusion, impairment of in vivo adipose tissue development and in vitro differentiation of preadipocytes by hypoxia is not mediated by PAI-1.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ivana Zagotta ◽  
Elitsa Y. Dimova ◽  
Jan-Bernd Funcke ◽  
Martin Wabitsch ◽  
Thomas Kietzmann ◽  
...  

Increased plasminogen activator inhibitor-1 (PAI-1) levels are associated with a number of pathophysiological complications; among them is obesity. Resveratrol was proposed to improve obesity-related health problems, but the effect of resveratrol on PAI-1 gene expression in obesity is not completely understood. In this study, we used SGBS adipocytes and a model of human adipose tissue inflammation to examine the effects of resveratrol on the production of PAI-1. Treatment of SGBS adipocytes with resveratrol reduced PAI-1 mRNA and protein in a time- and concentration-dependent manner. Further experiments showed that obesity-associated inflammatory conditions lead to the upregulation of PAI-1 gene expression which was antagonized by resveratrol. Although signaling via PI3K, Sirt1, AMPK, ROS, and Nrf2 appeared to play a significant role in the modulation of PAI-1 gene expression under noninflammatory conditions, those signaling components were not involved in mediating the resveratrol effects on PAI-1 production under inflammatory conditions. Instead, we demonstrate that the resveratrol effects on PAI-1 induction under inflammatory conditions were mediated via inhibition of the NFκB pathway. Together, resveratrol can act as NFκB inhibitor in adipocytes and thus the subsequently reduced PAI-1 expression in inflamed adipose tissue might provide a new insight towards novel treatment options of obesity.


1993 ◽  
Vol 70 (02) ◽  
pp. 301-306 ◽  
Author(s):  
Linda A Robbie ◽  
Nuala A Booth ◽  
Alison M Croll ◽  
Bruce Bennett

SummaryThe relative importance of the two major inhibitors of fibrinolysis, α2-antiplasmin (α2-AP) and plasminogen activator inhibitor (PAI-1), were investigated using a simple microtitre plate system to study fibrin clot lysis in vitro. Cross-linked fibrin clots contained plasminogen and tissue plasminogen activator (t-PA) at concentrations close to physiological. Purified α2-AP and PAI-1 caused dose-dependent inhibition. All the inhibition due to normal plasma, either platelet-rich or poor, was neutralised only by antibodies to α2-AP. Isolated platelets, at a final concentration similar to that in blood, 2.5 × 108/ml, markedly inhibited clot lysis. This inhibition was neutralised only by antibodies to PAI-1. At the normal circulating ratio of plasma to platelets, α2-AP was the dominant inhibitor. When the platelet:plasma ratio was raised some 20-fold, platelet PAI-1 provided a significant contribution. High local concentrations of PAI-1 do occur in thrombi in vivo, indicating a role for PAI-1, complementary to that of α2-AP, in such situations.


Open Medicine ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. 604-609
Author(s):  
Sylvie Opatrna ◽  
Marie Korabečná ◽  
Věra Křížková ◽  
Zbynek Tonar ◽  
Jitka Kočová ◽  
...  

AbstractThe proteins of the fibrinolytic system — urokinase plasminogen activator(uPA), tissue plasminogen activator (tPA)and plasminogen activator inhibitor type IPAI-I) — play important roles in fibrotization in various organs and including peritoneum. To study the cellular localization of PAI-1, tPA and uPA within the adipose tissue of the peritoneal membrane in patients at the onset of peritoneal dialysis(PD) we determined the initial expression of these proteins in relationship to multiple clinical variables. Methods: routinely performed parietal peritoneal biopsies in 12 patients undergoing peritoneal catheter implantation were examined. We used formalinfixed, paraffin-embedded specimens for immunohistochemical localization of these proteins along with the stereological pointcounting method for quantification of their expression within the peritoneal adipose tissue. Results: strong positive mutual correlation between the expression of PAI-1 and both uPA (SpearmanR=0.66) and tPA (R=0.59) as well as between the expression of uPA and tPA (R=0.77) was found without any relatioship to BMI, age, peritoneal transport characteristic or diabetes status. Conclusion: Adipose tissue within the peritoneum is capable of producing fibrinolysis regulators (independently on clinical parameters) thus possibly affecting the fibrotization and function of peritoneum as dialysis membrane. The effect of dialysis solution dosing, composition and other dialysis related factors should be clarified in future studies.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
John N. Fain

This paper considers the role of putative adipokines that might be involved in the enhanced inflammatory response of human adipose tissue seen in obesity. Inflammatory adipokines [IL-6, IL-10, ACE, TGFβ1, TNFα, IL-1β, PAI-1, and IL-8] plus one anti-inflammatory [IL-10] adipokine were identified whose circulating levels as well as in vitro release by fat are enhanced in obesity and are primarily released by the nonfat cells of human adipose tissue. In contrast, the circulating levels of leptin and FABP-4 are also enhanced in obesity and they are primarily released by fat cells of human adipose tissue. The relative expression of adipokines and other proteins in human omental as compared to subcutaneous adipose tissue as well as their expression in the nonfat as compared to the fat cells of human omental adipose tissue is also reviewed. The conclusion is that the release of many inflammatory adipokines by adipose tissue is enhanced in obese humans.


Sign in / Sign up

Export Citation Format

Share Document