Anticoagulant effects of statins and their clinical implications

2014 ◽  
Vol 111 (03) ◽  
pp. 392-400 ◽  
Author(s):  
Kathleen Brummel-Ziedins ◽  
Kenneth Mann ◽  
Anetta Undas

SummaryThere is evidence indicating that statins (3-hydroxy-methylglutaryl coenzyme A reductase inhibitors) may produce several cholesterol-independent antithrombotic effects. In this review, we provide an update on the current understanding of the interactions between statins and blood coagulation and their potential relevance to the prevention of venous thromboembolism (VTE). Anticoagulant properties of statins reported in experimental and clinical studies involve decreased tissue factor expression resulting in reduced thrombin generation and attenuation of pro-coagulant reactions catalysed by thrombin, such as fibrinogen cleavage, factor V and factor XIII activation, as well as enhanced endothelial thrombomodulin expression, resulting in increased protein C activation and factor Va inactivation. Observational studies and one randomized trial have shown reduced VTE risk in subjects receiving statins, although their findings still generate much controversy and suggest that the most potent statin rosuvastatin exerts the largest effect.

1999 ◽  
Vol 82 (11) ◽  
pp. 1462-1468 ◽  
Author(s):  
José Fernández ◽  
Jari Petäjä ◽  
John Griffin

SummaryUnfractionated heparin potentiates the anticoagulant action of activated protein C (APC) through several mechanisms, including the recently described enhancement of proteolytic inactivation of factor V. Possible anticoagulant synergism between APC and physiologic glycosaminoglycans, pharmacologic low molecular weight heparins (LMWHs), and other heparin derivatives was studied. Dermatan sulfate showed potent APC-enhancing effect. Commercial LMWHs showed differing abilities to promote APC activity, and the molecular weight of LMWHs correlated with enhancement of APC activity. Degree of sulfation of the glycosaminoglycans influenced APC enhancement. However, because dextran sulfates did not potentiate APC action, the presence of sulfate groups per se on a polysaccharide is not sufficient for APC enhancement. As previously for unfractionated heparin, APC anticoagulant activity was enhanced by glycosaminoglycans when factor V but not factor Va was the substrate. Thus, dermatan sulfate and LMWHs exhibit APC enhancing activity in vitro that could be of physiologic and pharmacologic significance.


1993 ◽  
Vol 69 (02) ◽  
pp. 124-129 ◽  
Author(s):  
Susan Solymoss ◽  
Kim Thi Phu Nguyen

SummaryActivated protein C (APC) is a vitamin K dependent anticoagulant which catalyzes the inactivation of factor Va and VIIIa, in a reaction modulated by phospholipid membrane surface, or blood platelets. APC prevents thrombin generation at a much lower concentration when added to recalcified plasma and phospholipid vesicles, than recalcified plasma and platelets. This observation was attributed to a platelet associated APC inhibitor. We have performed serial thrombin, factor V one stage and two stage assays and Western blotting of dilute recalcified plasma containing either phospholipid vesicles or platelets and APC. More thrombin was formed at a given APC concentration with platelets than phospholipid. One stage factor V values increased to higher levels with platelets and APC than phospholipid and APC. Two stage factor V values decreased substantially with platelets and 5 nM APC but remained unchanged with phospholipid and 5 nM APC. Western blotting of plasma factor V confirmed factor V activation in the presence of platelets and APC, but lack of factor V activation with phospholipid and APC. Inclusion of platelets or platelet membrane with phospholipid enhanced rather than inhibited APC catalyzed plasma factor V inactivation. Platelet activation further enhanced factor V activation and inactivation at any given APC concentration.Plasma thrombin generation in the presence of platelets and APC is related to ongoing factor V activation. No inhibition of APC inactivation of FVa occurs in the presence of platelets.


2009 ◽  
Vol 37 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Thomas J. Cramer ◽  
John H. Griffin ◽  
Andrew J. Gale

1999 ◽  
Vol 82 (12) ◽  
pp. 1673-1679 ◽  
Author(s):  
Katalin Váradi ◽  
Jürgen Siekmann ◽  
Peter Turecek ◽  
H. Peter Schwarz ◽  
Victor Marder

SummaryHemostasis is initiated by tissue factor (TF) exposed on cellular phospholipid (PL) membranes, leading to thrombin generation. The binding of thrombin to thrombomodulin (TM), activates the protein C pathway, resulting in the inactivation of factors Va and VIIIa by activated protein C (APC) and a negative feedback effect on thrombin generation. A new assay system was developed for simultaneous measurement of thrombin and APC generation in defibrinated plasma induced by large unilamellar PL vesicles complexed with full-length recombinant TF (TF:PL). TF:PL preparations with a low TF concentration induced an initial rate of thrombin generation below 100 nM/min, and resulted in less thrombin formation in the presence of TM than in its absence. In contrast, TF:PL preparations with a high concentration of TF induced a higher rate of thrombin generation, and APC-mediated feedback inhibition did not occur, despite maximal APC generation. We used the same TF:PL surfaces to study factor Va inactivation by APC in a non-plasma reaction system, and found an inverse correlation between TF surface density and the rate of factor Va inactivation. This observation suggests a previously unrecognized hemostatic effect of TF, namely a non-enzymatic surface density-based inhibition of the anticoagulant effect of APC. In this model, high concentrations and surface density of TF exert complementary effects by promoting the regular procoagulant cascade and by inhibiting the protein C pathway, thereby maximizing hemostasis after vascular injury.


2003 ◽  
Vol 90 (07) ◽  
pp. 17-26 ◽  
Author(s):  
Nicole Langlois ◽  
Philip Wells

SummaryClinical equipoise exists regarding whether relatives of individuals with venous thromboembolism (VTE) and thrombophilia should be screened for thrombophilia. There have been no systematic attempts to summarize studies that have assessed the incidence of VTE in relatives. The purpose of this review was to systematically identify and review observational studies with thrombophilic relatives and to summarize their findings with respect to their risk of VTE.We conducted a systematic literature review and included nine observational studies meeting a priori inclusion criteria. Potentially eligible studies evaluated VTE incidence in relatives of index patients (probands) with symptomatic thrombophilia. In the four prospective studies, the incidence of VTE for asymptomatic family members with factor V Leiden ranged from 0.58-0.67% per year, 1.0-2.5% for protein C deficiency, 0.7-2.2% for protein S deficiency, and 4% for antithrombin deficiency. About half of all VTEs occurred during well-known risk periods but incidence rates were decreased by use of prophylaxis. No deaths from pulmonary embolism or fatal hemorrhages from anticoagulants were reported. The incidence of VTE was generally lower in the retrospective studies. The pooled relative risk from four retrospective studies for factor V Leiden carriers was 3.69 (CI 2.27, 6.00) and from two studies the pooled relative risk for deficiencies of protein C, protein S, and antithrombin was 10.58 (CI 5.38, 20.81).In conclusion, the risk of VTE events in asymptomatic relatives is low, but this may be an underestimate. Anticoagulant prophylaxis during risk periods appears to be of benefit but further research in this area is required.


2010 ◽  
Vol 11 (2) ◽  
pp. 162-164 ◽  
Author(s):  
Danny Cheng ◽  
Steven M. Zangan

Given the complex embryogenesis of the inferior vena cava (IVC), anatomic variations are commonly encountered. Duplication of the IVC occurs in up to 2.8% of the population. Though asymptomatic, a duplicated IVC has important clinical implications when attempting caval filtration. We present the case of a 45- year-old male with factor V leiden and protein C deficiency, who required cessation of warfarin anticoagulation in preparation for cervical laminectomy. The patient had a duplicated IVC and required placement of a caval filter in each IVC.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1023-1023 ◽  
Author(s):  
Rinku Majumder ◽  
JinMing Wang ◽  
Barry R. Lentz

Abstract Protein C is a vitamin K-dependent, anti-thrombotic protein that is proteolytically cleaved by thrombin to produce the active serine protease, activated protein C (APC). APC inactivates co-factors Va and VIIIa, leading to down-regulation of thrombin generation. Factor Va requires phosphatidylserine (PS) for full cofactor activity. APC inactivates bovine factor Va by catalyzing cleavage in its heavy-chain at Arg505, Arg 662 and Arg306. The cleavage at Arg 306 is stimulated by PS-containing membranes. In this paper, we use water-soluble 2-dicaproyl-sn-glycero-3-phospho-L-serine (C6PS) to ask whether a membrane or molecular PS regulates inactivation of factor Va by APC. Synthetic substrate titration suggested that APC has two Ca2+-requiring binding sites for C6PS: one site increased the APC amidolytic activity (Kdeff ~ 1.3 μM) while the other site decreased it (Kdeff ~ 2 μM) in the presence of 2 mM Ca2+. The effect of C6PS on APC amidolytic activity was PS-specific, with C6PE having no effect. However, titration of both intrinsic fluorescence and DEGR ([5-(dimethylamino)-l-naphthalenesulfonyl] glutamylycylarginyl chloromethyl )-labeled APC fluorescence showed only one Ca2+-requiring C6PS binding site (Kdeff ~ 0.8 μM). The fluorescence anisotropy of DEGR-APC in the presence of 200 μM C6PS revealed C6PS-dependent 1:1 binding to both factor Va isoforms (Va1or Va2) with Kdeff of 1.13x10-9 M (Va1) and 0.3x10-9 M (Va2). The inactivation of factors Va1/Va2 by APC was also promoted by C6PS. In the presence of 200 μM C6PS to saturate sites on both APC and factor Va, both factors Va1/Va2 were fully inactivated by APC (indicating cleavage at Arg 306). However, in the absence of C6PS or presence of only 4 μM C6PS (sufficient to saturate sites only on APC), only partial inactivation (48–52%) of factor Va1/Va2 was observed. These results suggest that PS binding to APC may have some effect on cleavage at Arg505 or Arg 662 but that PS binding to factor Va was needed to promote cleavage at Arg 306. Supported by USPHS grant HL072827 to BRL.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 193-193
Author(s):  
Samira B. Jeimy ◽  
Mary Ann Quinn-Allen ◽  
Nola Fuller ◽  
Kenneth Segers ◽  
Alan R. Stafford ◽  
...  

Abstract Platelets and endothelial cells store the polymeric factor V(a) binding protein, multimerin 1 (MMRN1), for release upon agonist stimulation. In human megakaryocytes, factor V binding to MMRN1 follows plasma factor V endocytosis, resulting in stored complexes of MMRN1 and factor V in platelet α-granules. The C2 domain of the factor V light chain contains a MMRN1 binding site; however, the affinity and stoichiometry of factor V-MMRN1 binding have not been determined, direct comparisons of factor V and Va binding to MMRN1 have not been done, and potential homologous roles of C1 and C2 domain structures in MMRN1 binding have not been studied. To further explore the mechanism of factor V and Va binding to MMRN1, and the roles of B domain release and C1 domain residues in MMRN1 binding, we used surface plasmon resonance and solid-phase binding studies. Functional consequences of factor V-MMRN1 binding were tested in competitive binding assays with the soluble phospholipid 1,2-Dicaproyl-sn-glycero-3-phospho-L-serine (C6PS), and calibrated automated thrombinography (CAT). Factor V bound to MMRN1 with a higher affinity than factor Va (approximately 2 nM versus 12 nM), and a stoichiometry consistent with binding to MMRN1 trimers. The higher affinity of factor V for MMRN1 was mainly due to differences in rates of formation of a more stable, secondary complex with MMRN1. Factor V activation by thrombin dissociated bound factor V from MMRN1, consistent with the reduced affinity of factor Va for MMRN1. A panel of point mutated, B domain deleted factor V constructs were used to identify MMRN1 binding residues in the C1 domain of factor V and Va. On a three dimensional model of factor Va, these residues mapped to a large, predominantly contiguous region between the C1 and C2 domains, that overlapped residues critical for factor Va phospholipid binding and procoagulant function. Consistent with the lowered affinity of factor Va for MMRN1, C6PS significantly inhibited factor Va-MMRN1, but not factor V-MMRN1 binding (p<0.05). Overlap between the MMRN1 and phospholipid binding sites was verified by CAT assays, as MMRN1 caused dose-dependent, significant reductions in plasma thrombin generation in these assays, by increasing lag time (p<0.01), and reducing peak (p<0.01) and total thrombin generation (p<0.01). Taken together, these data indicate that the functional homologies between the C domains of factor V extend to their MMRN1 binding sites. Moreover, thrombin has modulating effects on factor V-MMRN1 binding that mimic its effects on factor VIII-von Willebrand factor binding. The affinity of factor V-MMRN1 binding could be important to promote the association of MMRN1 with factor V in platelets, until factor V release and activation for prothrombinase assembly.


Biochemistry ◽  
2002 ◽  
Vol 41 (5) ◽  
pp. 1672-1680 ◽  
Author(s):  
Jay R. Silveira ◽  
Michael Kalafatis ◽  
Paula B. Tracy

Sign in / Sign up

Export Citation Format

Share Document