scholarly journals Effects of climate change and land use change on the water balance components of the Xingu river basin, southeastern Amazon

Author(s):  
Rodnei Rizzo
2007 ◽  
Vol 4 (6) ◽  
pp. 4265-4295 ◽  
Author(s):  
J. Dams ◽  
S. T. Woldeamlak ◽  
O. Batelaan

Abstract. Land-use change and climate change, along with groundwater pumping are frequently indicated to be the main human-induced factors influencing the groundwater system. Up till now, research has mainly been focusing on the effect of the water quality of these human-induced changes on the groundwater system, often neglecting changes in quantity. The focus in this study is on the impact of land-use changes in the near future, from 2000 until 2020, on the groundwater quantity and the general hydrologic balance of a sub-catchment of the Kleine Nete, Belgium. This study tests a new methodology which involves coupling a land-use change model with a water balance model and a groundwater model. The future land-use is modelled with the CLUE-S model. Four scenarios (A1, A2, B1 and B2) based on the Special Report on Emission Scenarios (SRES) are used for the land-use modelling. Water balance components, groundwater level and baseflow are simulated using the WetSpass model in conjunction with a MODFLOW groundwater model. Results show that the average recharge slowly decreases for all scenarios, the decreases are 2.9, 1.6, 1.8 and 0.8% for respectively scenario A1, A2, B1 and B2. The predicted reduction in recharge results in a small decrease of the average groundwater level, ranging from 2.5 cm for scenario A1 to 0.9 cm for scenario B2, and a reduction of the total baseflow with maximum 2.3% and minimum 0.7% respectively for scenario A1 and B2. Although these average values do not indicate significant changes for the groundwater system, spatial analysis of the changes shows the changes are concentrated in the neighbourhood of the major cities in the study areas. It is therefore important for spatial managers to take the groundwater system into account for reducing the negative impacts of land-use and climate change as much as possible.


2010 ◽  
Vol 7 (4) ◽  
pp. 5851-5893 ◽  
Author(s):  
L. M. Mango ◽  
A. M. Melesse ◽  
M. E. McClain ◽  
D. Gann ◽  
S. G. Setegn

Abstract. With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.


2010 ◽  
Vol 5 (No. 4) ◽  
pp. 128-138 ◽  
Author(s):  
P. Kovář ◽  
D. Vaššová

This paper presents results of decadal (10-day) water balance simulations for the vegetation periods (April to October) of 2001 (normal year), 2002 (wet year) and 2003 (dry year) in the Němčick&yacute; Stream experimental catchment (3.52 km<sup>2</sup>). The catchment is a typical agricultural area with a large extent of arable land. This paper shows that the model used (WBCM) is capable of reliably simulating decadal water balance components for the actual land use. The same model is then used to estimate water balance changes brought about when 10% of arable land has been transformed into permanent grassland. It is shown that this land use change results in a pronounced reduction of surface runoff and an increase in subsurface storage over the vegetation periods of all three years. The vegetation period groundwater runoff was only enhanced in the wet year, while the total runoff was reduced in all three years.&nbsp;


Water ◽  
2016 ◽  
Vol 8 (10) ◽  
pp. 472 ◽  
Author(s):  
Zhenliang Yin ◽  
Qi Feng ◽  
Songbing Zou ◽  
Linshan Yang

2021 ◽  
Author(s):  
Xu Chen ◽  
Ruiguang Han ◽  
Yongjie Wang

Abstract Drought can be impacted by both climate change and land use change in different ways. Thus, in order to predict future drought conditions, hydrological simulations as an ideal means, can be used to account for both projected climate change and projected land use change. In this study, projected climate and land use changes were integrated with the SWAT (Soil and Water Assessment Tool) model to estimate the combined impact of climate and land use projections on hydrological droughts in the Luanhe River basin. We presented that the measured runoff and the remote sensing inversion of soil water content were simultaneously used to validate the model to ensure the reliability of model parameters. Following the calibration and validation, the SWAT model was forced with downscaled precipitation and temperature outputs from a suite of nine Global Climate Models (GCMs) based on the CMIP5, corresponding to three different representative concentration pathways (RCP 2.6, RCP 4.5 and 8.5) for three distinct time periods: 2011–2040, 2041–2070 and 2071–2100, referred to as early-century, mid-century and late-century, respectively, and the land use predicted by CA-Markov model in the same future periods. Hydrological droughts were quantified using the Standardized Runoff Index (SRI). Compared to the baseline scenario (1961–1990), mild drought occurred more frequently during the next three periods (except the 2080s under the RCP2.6 emission scenario). Under the RCP8.5 emission scenario, the probability of severe drought or above occurring in the 2080s increased, the duration prolonged and the severity increased. Under the RCP2.6 scenario, the upper central region of the Luanhe river in the 2020s and upper reaches of the Luanhe river in the 2080s, were more likely to suffer extreme drought events. And under the RCP8.5 scenario, the middle and lower Luanhe river in the 2080s, were more likely to suffer these conditions.


Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Semuel Laimeheriwa

This research was conducted to estimate the values of parameters which described the physical characteristics of catchments area and monthly water balance components, and understand the sensitivity of the water balance components to change in the parameter value due to the physical changes occurring in Way Pia catchments area, Ceram Island.  The method used involved calculation of the regional water balance in the current time (normal) and during the time of land use change, using an evapoclimatonomy model. The main model inputs were monthly rainfall, global radiation and run off. Analyses of data were conducted with five steps as follows : (1) mathematical formulation of the evapoclimatonomy model, (2) algorithm formation and transfer to computer code, (3) establishment of parameters and calibration, (4) validation of model, and (5) experimentation of model. The current physical conditions of Way Pia catchments area were characterized by: average of parameter value of albedo, a = 0,16; rainfall threshold, Pn = 100 mm; surface run off ratio, np = 0,23; evapority, ep = 0,42; measure of soil water loss from sub surface, vN = 0,12; and measure of evapotranspiration of soil water from sub surface, vE = 0,20. Model output of the current water balance consisted of  annual value of soil moisture, m = 272 mm; total evapotranspiration, E = 1393 mm, and total run off, N = 920 mm. The land use change  in the form of land clearing will increase the parameter values of a and np, which affect on increasing of direct run off (N') of 13% as compared to current conditions.


Sign in / Sign up

Export Citation Format

Share Document