scholarly journals Assessing Variation in Water Balance Components in Mountainous Inland River Basin Experiencing Climate Change

Water ◽  
2016 ◽  
Vol 8 (10) ◽  
pp. 472 ◽  
Author(s):  
Zhenliang Yin ◽  
Qi Feng ◽  
Songbing Zou ◽  
Linshan Yang
2014 ◽  
Vol 62 (3) ◽  
pp. 197-208 ◽  
Author(s):  
Yeugeniy M. Gusev ◽  
Olga N. Nasonova

Abstract The scenario forecasting technique for assessing changes of water balance components of the northern river basins due to possible climate change was developed. Three IPCC global emission scenarios corresponding to different possible scenarios for economic, technological, political and demographic development of the human civilization in the 21st century were chosen for generating climate change projections by an ensemble of 16 General Circulation Models with a high spatial resolution. The projections representing increments of monthly values of meteorological characteristics were used for creating 3-hour meteorological time series up to 2063 for the Northern Dvina River basin, which belongs to the pan-Arctic basin and locates at the north of the European part of Russia. The obtained time series were applied as forcing data to drive the land surface model SWAP to simulate possible changes in the water balance components due to different scenarios of climate change for the Northern Dvina River basin


2010 ◽  
Vol 14 (10) ◽  
pp. 1979-1987 ◽  
Author(s):  
J. Wang ◽  
H. Li ◽  
X. Hao

Abstract. The spatial and temporal variations of snowcover distribution, and snowmelt runoff are considered as sensitive indicators for climatic change. The purpose of this paper is to analyze and forecast the responses of snowmelt runoff to climate change in an inland river basin. The upper basin of Heihe River in Northwestern China was chose as the study area, and the observation data from the meteorological and hydrological stations were utilized to analyze the status and regularity of the climatic change over the past 50 years. Snow cover area was obtained by an optimized technology using Moderate Resolution Imaging Spectroradiometer data with Normalized Difference Snow Index adjustment and topographic correction. A concept of potential snowmelt was suggested to illustrate the response of spatial snowmelt to climate change. The results show that the annual SCA proportion and the potential snowmelt keep an increasing trend since 2000. There is a negative relationship between annual air temperature and SCA proportion from 2000 to 2008. Snowmelt Runoff Model was chose to simulate snowmelt runoff and scenario forecast the change trend of snowmelt runoff in this region. The results show that climatic warming was apparent in the upper basin of Heihe River over the past 50 a. Annual average air temperature of three different weather stations located in the basin has increased 2.1 °C, 2.6 °C and 2.9 °C respectively from 1956 to present. The snowmelt runoff has increased obviously from 1970 to present. With different warming climate scenarios, the results by using SRM simulating showed that the first occurred time of snowmelt runoff shift ahead and discharge become larger as responses of snowmelt runoff to air temperature increasing, and the influence of temperature rising on average discharge of the whole snow season is not obvious.


2012 ◽  
Vol 22 (3) ◽  
pp. 387-406 ◽  
Author(s):  
Peng Hou ◽  
Qiao Wang ◽  
Guangzhen Cao ◽  
Changzuo Wang ◽  
Zhiming Zhan ◽  
...  

Author(s):  
S. P. Aggarwal ◽  
P. K. Thakur ◽  
V. Garg ◽  
B. R. Nikam ◽  
A. Chouksey ◽  
...  

The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC) model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP) forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution) from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB) from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m<sup>3</sup>/s from VIC and 50 to 1556 m<sup>3</sup>/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R<sup>2</sup> of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily precipitation and daily surface wind speed. The GFDL model also gives validation phase scenarios from 2006 to 2015, which are used to test the overall model performance with current data. The current assessment made by hydrological water balance based approach has given reasonable good results in Beas river basin. The main limitation of this study is lack of full representation of glacier melt flow using fully energy balance model. This component will be addressed in coming time and it will be integrated with tradition hydrological and snowmelt runoff models. The other limitation of current study is dependence on NCEP or other reanalysis of climate forcing data for hydrological modelling, this leads to mismatch between actual and simulated water balance components. This problem can be addressed if more ground based and fine resolution grid based hydro meteorological data are used as input forcing data for hydrological modelling.


2020 ◽  

<p>The present study analyses the various uncertainties and nonstationarity in the streamflow projections of Subarnarekha river basin in Eastern India using two widely used hydrological climate models: 1) general circulation model (GCM), and 2) forcing climate change scenarios. These two climate models are used to force the ArcSWAT model. Subsequently this model is calibrated using SUFI-2 optimization technique. The downscaled and bias-corrected data from an ensemble of 10 climate projections with representative concentration pathways (RCP) 4.5 and 8.5 scenarios (five each) were used in first model, whereas in second model a total of 63 (7 perturbed precipitations and 9 perturbed temperatures) combinations of hypothetical climate change scenarios were used. The results show very good correlation during monthly calibration time steps and relatively good agreement between the observed and simulated streamflows in daily calibration time steps. The uncertainties are expressed in probabilistic terms using probability density function (PDF) and cumulative distribution function (CDF) as they provide significant information for decision process in climate change adaptation in the river basin. The uncertainties associated with climate models, return periods and streamflow extremes are also analysed in the present work. The RCP 8.5 scenarios seem more appropriate than RCP 4.5 scenarios in quantifying the uncertainties under nonstationarity assumptions. The mean values of water balance components and their percentage variation for both historic and future periods reveal that the water balance components get affected significantly due to climate change in a future period. Consequently, the streamflows are likely to decline in the river basin. The present study also highlights the comprehensive approaches that are being planned to facilitate adaptation to climate change as well as those that are specific to the water resources management in the study region. The findings in this work are useful for overall well-being of people in the study area.</p>


Sign in / Sign up

Export Citation Format

Share Document