scholarly journals Angiotensin II Increases Expression of α1C Subunit of L-Type Calcium Channel Through a Reactive Oxygen Species and cAMP Response Element–Binding Protein–Dependent Pathway in HL-1 Myocytes

2007 ◽  
Vol 100 (10) ◽  
pp. 1476-1485 ◽  
Author(s):  
Chia-Ti Tsai ◽  
Danny Ling Wang ◽  
Wen-Pin Chen ◽  
Juey-Jen Hwang ◽  
Chia-Shan Hsieh ◽  
...  
Hypertension ◽  
2003 ◽  
Vol 42 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Toshihiro Ichiki ◽  
Tomotake Tokunou ◽  
Kae Fukuyama ◽  
Naoko Iino ◽  
Satoko Masuda ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 149 (7) ◽  
pp. 3635-3642 ◽  
Author(s):  
Robert Fürst ◽  
Stefan Zahler ◽  
Angelika M. Vollmar

We have recently identified the MAPK phosphatase (MKP)-1 as a novel mediator of the antiinflammatory properties of glucocorticoids (dexamethasone) in the human endothelium. However, nothing is as yet known about the signaling pathways responsible for the up-regulation of MKP-1 by dexamethasone in endothelial cells. Knowledge of the molecular basis of this new alternative way of glucocorticoid action could facilitate the identification of new antiinflammatory drug targets. Thus, the aim of our study was to elucidate the underlying molecular mechanisms. Using Western blot analysis, we found that dexamethasone rapidly activates ERK, c-jun N-terminal kinase (JNK), and p38 MAPK in human umbilical vein endothelial cells. By applying the kinase inhibitors PD98059 (MAPK kinase-1) and SP600125 (JNK), ERK and JNK were shown to be crucial for the induction of MKP-1. Using EMSA and a decoy oligonucleotide approach, the transcription factors activator protein-1 (activated by ERK and JNK) and cAMP response element-binding protein (activated by ERK) were found to be involved in the up-regulation of MKP-1 by dexamethasone. Interestingly, dexamethasone induces the generation of reactive oxygen species (measured by dihydrofluorescein assay), which participate in the signaling process by triggering JNK activation. Our work elucidates a novel alternative mechanism for transducing antiinflammatory effects of glucocorticoids in the human endothelium. Thus, our study adds valuable information to the efforts made to find new antiinflammatory principles utilized by glucocorticoids. This might help to gain new therapeutic options to limit glucocorticoid side effects and to overcome resistance.


2019 ◽  
Vol 17 (3) ◽  
pp. 249-253
Author(s):  
Liu Chenglong ◽  
Liu Haihua ◽  
Zhang Fei ◽  
Zheng Jie ◽  
Wei Fang

Cancer-induced bone pain is a severe and complex pain caused by metastases to bone in cancer patients. The aim of this study was to investigate the analgesic effect of scutellarin on cancer-induced bone pain in rat models by intrathecal injection of Walker 256 carcinoma cells. Mechanical allodynia was determined by paw withdrawal threshold in response to mechanical stimulus, and thermal hyperalgesia was indicated by paw withdrawal latency in response to noxious thermal stimulus. The paw withdrawal threshold and paw withdrawal latencies were significantly decreased after inoculation of tumor cells, whereas administration of scutellarin significantly attenuated tumor cell inoculation-induced mechanical and heat hyperalgesia. Tumor cell inoculation-induced tumor growth was also significantly abrogated by scutellarin. Ca2+/calmodulin-dependent protein kinase II is a multifunctional kinase with up-regulated activity in bone pain models. The activation of Ca2+/calmodulin-dependent protein kinase II triggers phosphorylation of cAMP-response element binding protein. Scutellarin significantly reduced the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein in cancer-induced bone pain rats. Collectively, our study demonstrated that scutellarin attenuated tumor cell inoculation-induced bone pain by down-regulating the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein. The suppressive effect of scutellarin on phosphorylated-Ca2+/calmodulin-dependent protein kinase II/phosphorylated-cAMP-response element binding protein activation may serve as a novel therapeutic strategy for CIBP management.


Sign in / Sign up

Export Citation Format

Share Document