Autologous Transplantation of Bone Marrow Cells Improves Damaged Heart Function

Circulation ◽  
1999 ◽  
Vol 100 (suppl_2) ◽  
Author(s):  
Shinji Tomita ◽  
Ren-Ke Li ◽  
Richard D. Weisel ◽  
Donald A. G. Mickle ◽  
Eung-Joong Kim ◽  
...  

Background —Autologous bone marrow cells (BMCs) transplanted into ventricular scar tissue may differentiate into cardiomyocytes and restore myocardial function. This study evaluated cardiomyogenic differentiation of BMCs, their survival in myocardial scar tissue, and the effect of the implanted cells on heart function. Methods and Results —In vitro studies: BMCs from adult rats were cultured in cell culture medium (control) and medium with 5-azacytidine (5-aza, 10 μmol/L), TGFβ1 (10ng/mL), or insulin (1 nmol/L) (n=6, each group). Only BMCs cultured with 5-aza formed myotubules which stained positively for troponin I and myosin heavy chain. In vivo studies: a cryoinjury-derived scar was formed in the left ventricular free wall. At 3 weeks after injury, fresh BMCs (n=9), cultured BMCs (n=9), 5-aza–induced BMCs (n=12), and medium (control, n=12) were autologously transplanted into the scar. Heart function was measured at 8 weeks after myocardial injury. Cardiac-like muscle cells which stained positively for myosin heavy chain and troponin I were observed in the scar tissue of the 3 groups of BMC transplanted hearts. Only the 5-aza–treated BMC transplanted hearts had systolic and developed pressures which were higher ( P <0.05) than that of the control hearts. All transplanted BMCs induced angiogenesis in the scar. Conclusions —Transplantation of BMCs induced angiogenesis. BMCs cultured with 5-aza differentiated into cardiac-like muscle cells in culture and in vivo in ventricular scar tissue and improved myocardial function.

1995 ◽  
Vol 269 (1) ◽  
pp. H86-H95 ◽  
Author(s):  
E. Holder ◽  
B. Mitmaker ◽  
L. Alpert ◽  
L. Chalifour

Transgenic mice expressing polyomavirus large T antigen (PVLT) in cardiomyocytes develop a cardiac hypertrophy in adulthood. Morphometric analysis identified cardiomyocytes enlarged up to ninefold in cross-sectional area in the adult transgenic hearts compared with normal age-matched nontransgenic hearts. Most enlarged cardiomyocytes were found in the subendocardium, whereas normal-sized cardiomyocytes were localized to the midmyocardium. Transgenic hearts did not express detectable skeletal muscle actin mRNA or protein, or skeletal troponin I isoform mRNA. Some, but not all, transgenic hearts expressed an increase in the beta-myosin heavy chain mRNA. All five transgenic mice tested had increased expression of atrial natriuretic factor (ANF) mRNA. Whereas normal hearts expressed three myosin light chain proteins of 19, 16, and 15 kDa, we found that the 19-kDa myosin light chain was not observed in the transgenic hearts. We conclude that adult, PVLT-expressing, transgenic mice developed enlarged cardiomyocytes with an increase in beta-myosin heavy chain and ANF mRNA expression, but a widespread skeletal isoform usage was not present in these transgenic mice. The adult transgenic hearts thus display histological and molecular changes similar to those found in hypertrophy induced by a pressure overload in vivo.


1999 ◽  
Vol 144 (5) ◽  
pp. 989-1000 ◽  
Author(s):  
William A. Kronert ◽  
Angel Acebes ◽  
Alberto Ferrús ◽  
Sanford I. Bernstein

We show that specific mutations in the head of the thick filament molecule myosin heavy chain prevent a degenerative muscle syndrome resulting from the hdp2 mutation in the thin filament protein troponin I. One mutation deletes eight residues from the actin binding loop of myosin, while a second affects a residue at the base of this loop. Two other mutations affect amino acids near the site of nucleotide entry and exit in the motor domain. We document the degree of phenotypic rescue each suppressor permits and show that other point mutations in myosin, as well as null mutations, fail to suppress the hdp2 phenotype. We discuss mechanisms by which the hdp2 phenotypes are suppressed and conclude that the specific residues we identified in myosin are important in regulating thick and thin filament interactions. This in vivo approach to dissecting the contractile cycle defines novel molecular processes that may be difficult to uncover by biochemical and structural analysis. Our study illustrates how expression of genetic defects are dependent upon genetic background, and therefore could have implications for understanding gene interactions in human disease.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Kelly M Grimes ◽  
David Barefield ◽  
Mohit Kumar ◽  
Pieter P de Tombe ◽  
Sakthivel Sadayappan ◽  
...  

The naked mole-rat (NMR) is a mouse-sized rodent with a maximum longevity of >31 years. The species exhibits low basal heart rate (256 bpm) and cardiac output (7 ml/min) for its body size, as well as low fractional shortening (28%) for a rodent. However unlike other well-studied mammals, the NMR maintains cardiac reserve and diastolic function for at least 75% of its maximum lifespan - at ages equivalent to 90 year old humans. We questioned if this low basal cardiac function was due to NMR myofilament composition and function. NMR ventricles are comprised primarily of the β-myosin heavy chain isoform, which is associated with slowed myocardial contraction and increased efficiency. This is in stark contrast to mouse ventricles, which express predominately the α-isoform, and switch to the β-isoform upon experimental induction of heart failure. Compared to mice, NMR myofilament proteins such as cardiac troponin I and cardiac myosin binding protein-C display lower levels of phosphorylation. Such levels are indicative of decreased activation of myofilament proteins and may relate to the species’ low basal cardiac function. Both the NMR’s predominance of β-myosin heavy chain and the low basal level of myofilament phosphorylation present a phenotype much closer to that seen in human ventricles than in those of mice. Intriguingly, maximal force developed by skinned NMR cardiomyocytes is not significantly different to that of mouse cardiomyocytes (NMR: 70.9 ± 9.3mN/mm2 vs. mouse: 87.7 ± 0.6 mN/mm2). This is likely a reflection of the NMR’s ability to enhance cardiac function to the level of a mouse when stimulated, as is evident when both species are treated in vivo with dobutamine (3 μg/g i.p.). Such low basal cardiac function may put less overall strain on the heart over time and could be critical to the NMR’s ability to maintain cardiac function with age.


2010 ◽  
Vol 298 (4) ◽  
pp. C807-C816 ◽  
Author(s):  
Fred Haugen ◽  
Frode Norheim ◽  
Henrik Lian ◽  
Andreas J. Wensaas ◽  
Svein Dueland ◽  
...  

In addition to generating movement, skeletal muscle may have a function as a secretory organ. The aim of the present study was to identify novel proteins with signaling capabilities secreted from skeletal muscle cells. IL-7 was detected in media conditioned by primary cultures of human myotubes differentiated from satellite cells, and concentrations increased with incubation time. By immunoblotting and real-time RT-PCR IL-7 expression was confirmed at both protein and mRNA levels. Furthermore, with immunofluorescence and specific antisera, multinucleated myotubes were found to coexpress IL-7 and myosin heavy chain. During differentiation of human myotubes from satellite cells, IL-7 expression increased at mRNA and protein levels. In contrast, mRNA expression of the IL-7 receptor was 80% lower in myotubes compared with satellite cells. Incubations with recombinant IL-7 under differentiation conditions caused ∼35% reduction in mRNA for the terminal myogenic markers myosin heavy chain 2 (MYH2) and myogenin (MYOG), suggesting that IL-7 may act on satellite cells to inhibit development of the muscle fiber phenotype. Alternative routes of cell development were investigated, and IL-7 increased migration of satellite cells by 40% after 48 h in a Transwell system, whereas cell proliferation remained unchanged. In vivo, real-time RT-PCR analysis of musculus vastus lateralis ( n = 10) and musculus trapezius ( n = 7) biopsies taken from male individuals undergoing a strength training program demonstrated that after 11 wk mean IL-7 mRNA increased by threefold ( P = 0.01) and fourfold ( P = 0.04), respectively. In conclusion, we have demonstrated that IL-7 is a novel myokine regulated both in vitro and in vivo, and it may play a role in the regulation of muscle cell development.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


1984 ◽  
Vol 26 (2) ◽  
pp. 152-157
Author(s):  
S. M. Singh ◽  
D. L. Reimer

Frequency of sister chromatid exchanges (SCE) were recorded separately for different chromosomes from bone marrow cells of female mice of the two genetic strains (C3H/S and C57BL/6J). SCEs were evaluated following different doses of 5-bromo-2′deoxyuridine (BrdU) as nine hourly i.p. injections. The SCE per cell increased with increasing BrdU doses which was slightly higher in C3H/S than in the C57BL/6J. SCEs per cell were variable at every treatment – strain combination, possibly reflecting the heterogeneous nature of the bone marrow cells. In general, there is a positive correlation between SCE per chromosome and the relative chromosome length. Total SCEs on one of the large chromosomes (most likely the X chromosome), however, are significantly higher than expected on the basis of relative length alone. Most of this increase is attributable to one of the homologues of this chromosome, which is not in synchrony with the rest of the chromosomes and may represent the late-replicating X. These results when viewed in the light of replication properties of the heterochromatinized X, suggest a direct involvement of DNA replication in SCE formation and may argue against the replication point as the sole site for the SCEs.Key words: sister chromatid exchange, BrdU, recombination, replication, X chromosome.


Blood ◽  
2013 ◽  
Vol 121 (12) ◽  
pp. e90-e97 ◽  
Author(s):  
Mark Wunderlich ◽  
Benjamin Mizukawa ◽  
Fu-Sheng Chou ◽  
Christina Sexton ◽  
Mahesh Shrestha ◽  
...  

Key Points A relevant xenograft chemotherapy model was developed by using standard AML induction therapy drugs and primary human AML patient samples. Human AML cells show significantly increased sensitivity to in vivo chemotherapy treatment compared with murine LSK and total bone marrow cells.


Sign in / Sign up

Export Citation Format

Share Document