Abstract 1286: Neuronal Nitric Oxide Synthase Regulates Basal Vascular Tone in the Healthy Human Forearm in vivo.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Mike Seddon ◽  
Phil Chowienczyk ◽  
Barbara Casadei ◽  
Ajay Shah

Nitric oxide (NO) has an established role in the maintenance of vascular tone, generally assumed to be mediated by endothelial NO synthase (eNOS). Previous studies using the non-selective NOS inhibitor N G monomethyl-L-arginine (L-NMMA) in humans confirmed the in vivo importance of NO but the contribution of neuronal NO synthase (nNOS) is unknown due to the lack of available selective NOS inhibitors for human use. In this study, we investigated for the first time in humans the effects of S-methyl-L-thiocitrulline (SMTC), a competitive nNOS-selective inhibitor with 17-fold selectivity over eNOS. SMTC or L-NMMA were infused into the brachial artery of healthy male volunteers and forearm blood flow was measured by venous occlusion plethysmography. SMTC 0.025, 0.05, 0.1 and 0.2 μmol/min caused a dose-dependent reduction in basal blood flow in the infused arm of 9.2±1.9, 16.2±2.9, 22.9±3.9 and 30.1±3.8% respectively (n=10; mean±SE; all P<0.01). Substantially higher doses of L-NMMA of 0.5, 1, 2 and 4 μmol/min were required to reduce basal flow by 11.5±3.0, 25.1±3.0, 33.7±3.0 and 37.4±3.1% respectively (n=10). The highest dose of SMTC (ie, 0.2 μmol/min) tested had no significant effect on the vasodilator response to acetylcholine (ACh): Ach 40 and 80nmol/min increased blood flow by 3.93±0.64 and 5.54±0.69 ml/min/100mls tissue above baseline during saline co-infusion versus 3.95±0.69 and 4.90±0.71 ml/min/100mls tissue during SMTC co-infusion (n=10; P=NS). In contrast, L-NMMA significantly reduced the response to these doses of ACh by 64±9.9 and 60±10% (n=10; both P<0.01). The effect of SMTC on basal blood flow was completely abolished in the presence of the NOS substrate L-arginine (n=6; P<0.001) but was unaffected by the stereoisomer D-arginine (n=6). SMTC had no effect on the vasodilator response to sodium nitroprusside (n=5). In conclusion , SMTC reduced basal blood flow by stereospecific inhibition of the L-arginine:NO pathway but did not affect the eNOS-mediated vasodilator response to ACh. These results indicate that nNOS has a crucial role in the regulation of basal vascular tone in the human forearm in vivo .

2005 ◽  
Vol 98 (4) ◽  
pp. 1251-1257 ◽  
Author(s):  
William G. Schrage ◽  
Niki M. Dietz ◽  
John H. Eisenach ◽  
Michael J. Joyner

The relative contributions of endothelium-dependent dilators [nitric oxide (NO), prostaglandins (PGs), and endothelium-derived hyperpolarizing factor (EDHF)] in human limbs are poorly understood. We tested the hypothesis that relative contributions of NO and PGs differ between endothelial agonists acetylcholine (ACh; 1, 2, and 4 μg·dl−1·min−1) and bradykinin (BK; 6.25, 25, and 50 ng·dl−1·min−1). We measured forearm blood flow (FBF) using venous occlusion plethysmography in 50 healthy volunteers (27 ± 1 yr) in response to brachial artery infusion of ACh or BK in the absence and presence of inhibitors of NO synthase [NOS; with NG-monomethyl-l-arginine (l-NMMA)] and cyclooxygenase (COX; with ketorolac). Furthermore, we tested the idea that the NOS + COX-independent dilation (in the presence of l-NMMA + ketorolac, presumably EDHF) could be inhibited by exogenous NO administration, as reported in animal studies. FBF increased ∼10-fold in the ACh control; l-NMMA reduced baseline FBF and ACh dilation, whereas addition of ketorolac had no further effect. Ketorolac alone did not alter ACh dilation, but addition of l-NMMA reduced ACh dilation significantly. For BK infusion, FBF increased ∼10-fold in the control condition; l-NMMA tended to reduce BK dilation ( P < 0.1), and addition of ketorolac significantly reduced BK dilation. Similar to ACh, ketorolac alone did not alter BK dilation, but addition of l-NMMA reduced BK dilation. To test the idea that NO can inhibit the NOS + COX-independent portion of dilation, we infused a dose of sodium nitroprusside (NO-clamp technique) during ACh or BK that restored the reduction in baseline blood flow due to l-NMMA. Regardless of treatment order, the NO clamp restored baseline FBF but did not reduce the NOS + COX-independent dilation to ACh or BK. We conclude that the contribution of NO and PGs differs between ACh and BK, with ACh being more dependent on NO and BK being mostly dependent on a NOS + COX-independent mechanism (EDHF) in healthy young adults. The NOS + COX-independent dilation does not appear sensitive to feedback inhibition from NO in the human forearm.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Mike Seddon ◽  
Phil Chowienczyk ◽  
Narbeh Melikian ◽  
Rafal Dworakowski ◽  
Barbara Casadei ◽  
...  

Endothelial NO synthase (eNOS) is thought to be the major source of nitric oxide (NO) involved in the local regulation of human vascular tone. However, in studies using a selective neuronal NOS (nNOS) inhibitor S-methyl-L-thiocitrulline (SMTC), we recently reported that basal human forearm blood flow is regulated by nNOS. SMTC had no effect on acetylcholine-induced vasodilatation which however was inhibited by the non-selective NOS inhibitor N G monomethyl-L-arginine (L-NMMA). This study investigated the effects of nNOS in the human coronary circulation in vivo . We studied patients undergoing diagnostic cardiac catheterisation who had angiographically normal coronary arteries. Coronary flow velocity was measured by an intracoronary Doppler wire and epicardial artery diameter by QCA. We compared the effects of intracoronary SMTC or L-NMMA infusion on basal flow and the responses to substance P and isosorbide dinitrate (endothelium-dependent and -independent dilators, respectively). L-NMMA (25 μmol/min) reduced basal coronary flow by 22.3±5.3% and inhibited dilation to substance P (20 pmol/min) by 57±5.7% (n=8; both P<0.01). SMTC (0.625 μmol/min) also reduced basal flow (−34.8±6.3%; n=8; P<0.01), but had no effect on the response to substance P (inhibited by −2±14%; P=NS). The effects of SMTC were abolished by L-arginine (240μmol/ min; n=3). Both L-NMMA and SMTC reduced epicardial artery diameter (−2.5±0.6% and −2.8±0.9% respectively; P<0.05) but only L-NMMA reduced dilatation to substance P (5.6±1.3% before versus 3.0±0.8% after L-NMMA; P<0.05). These data indicate that local nNOS-derived NO regulates basal coronary blood flow in humans in vivo , whereas substance P-stimulated vasodilatation is eNOS-mediated. Our results indicate that nNOS and eNOS have distinct local roles in the physiological regulation of human coronary vascular tone in vivo .


2001 ◽  
Vol 280 (6) ◽  
pp. H2470-H2477 ◽  
Author(s):  
Julian P. J. Halcox ◽  
Suresh Narayanan ◽  
Laura Cramer-Joyce ◽  
Rita Mincemoyer ◽  
Arshed A. Quyyumi

The identity of endothelium-dependent hyperpolarizing factor (EDHF) in the human circulation remains controversial. We investigated whether EDHF contributes to endothelium-dependent vasomotion in the forearm microvasculature by studying the effect of K+ and miconazole, an inhibitor of cytochrome P-450, on the response to bradykinin in healthy human subjects. Study drugs were infused intra-arterially, and forearm blood flow was measured using strain-gauge plethysmography. Infusion of KCl (0.33 mmol/min) into the brachial artery caused baseline vasodilation and inhibited the vasodilator response to bradykinin, but not to sodium nitroprusside. Thus the incremental vasodilation induced by bradykinin was reduced from 14.3 ± 2 to 7.1 ± 2 ml · min−1 · 100 g−1( P < 0.001) after KCl infusion. A similar inhibition of the bradykinin ( P = 0.014), but not the sodium nitroprusside (not significant), response was observed with KCl after the study was repeated during preconstriction with phenylephrine to restore resting blood flow to basal values after KCl. Miconazole (0.125 mg/min) did not inhibit endothelium-dependent or -independent responses to ACh and sodium nitroprusside, respectively. However, after inhibition of cyclooxygenase and nitric oxide synthase with aspirin and N G-monomethyl-l-arginine, the forearm blood flow response to bradykinin ( P = 0.003), but not to sodium nitroprusside (not significant), was significantly suppressed by miconazole. Thus nitric oxide- and prostaglandin-independent, bradykinin-mediated forearm vasodilation is suppressed by high intravascular K+ concentrations, indicating a contribution of EDHF. In the human forearm microvasculature, EDHF appears to be a cytochrome P-450 derivative, possibly an epoxyeicosatrienoic acid.


2001 ◽  
Vol 280 (3) ◽  
pp. H1222-H1231 ◽  
Author(s):  
X. F. Figueroa ◽  
A. D. Martínez ◽  
D. R. González ◽  
P. I. Jara ◽  
S. Ayala ◽  
...  

To assess the hypothesis that microvascular nitric oxide (NO) is critical to maintain blood flow and solute exchange, we quantified NO production in the hamster cheek pouch in vivo, correlating it with vascular dynamics. Hamsters (100–120 g) were anesthetized and prepared for measurement of microvessel diameters by intravital microscopy, of plasma flow by isotopic sodium clearance, and of NO production by chemiluminescence. Analysis of endothelial NO synthase (eNOS) location by immunocytochemistry and subcellular fractionation revealed that eNOS was present in arterioles and venules and was 67 ± 7% membrane bound. Basal NO release was 60.1 ± 5.1 pM/min ( n = 35), and plasma flow was 2.95 ± 0.27 μl/min ( n = 29). Local NO synthase inhibition with 30 μM N ω-nitro-l-arginine reduced NO production to 8.6 ± 2.6 pmol/min (−83 ± 5%, n = 9) and plasma flow to 1.95 ± 0.15 μl/min (−28 ± 12%, n = 17) within 30–45 min, in parallel with constriction of arterioles (9–14%) and venules (19–25%). The effects of N ω-nitro-l-arginine (10–30 μM) were proportional to basal microvascular conductance ( r = 0.7, P < 0.05) and fully prevented by 1 mM l-arginine. We conclude that in this tissue, NO production contributes to 35–50% of resting microvascular conductance and plasma-tissue exchange.


1993 ◽  
Vol 75 (1) ◽  
pp. 424-431 ◽  
Author(s):  
M. J. Winn ◽  
B. Vallet ◽  
N. K. Asante ◽  
S. E. Curtis ◽  
S. M. Cain

We investigated the responses of canine coronary rings to endothelium-derived relaxing factor-nitric oxide- (EDRF-NO) dependent agonists and NO synthase (NOS) inhibitors 3 h after endotoxic shock was induced in dogs by lipopolysaccharide infusion (LPS; 2 mg/kg). EDRF-NO-dependent relaxation to thrombin [control maximum response produced after administration of thrombin (Emax) was -85.2 +/- 7.0% of the constrictor response produced by the thromboxane analogue U-46619], acetylcholine (control Emax -88.4 +/- 3.4%), or bradykinin (control Emax -80.5 +/- 2.2%) was not inhibited by LPS (Emax thrombin -75.9 +/- 9.5%; Emax acetylcholine -90.2 +/- 2.4%; Emax bradykinin -91.6 +/- 3.4%). The NOS inhibitor NG-monomethyl-L-arginine (L-NMMA) (10(-6)-3 x 10(-4) M) caused constriction of rings with endothelium (Emax 36.3 +/- 5.6%), an effect that was greater after LPS (Emax 59.2 +/- 4.1%; P < 0.05). D-NMMA had no effect in control, but it increased tension after LPS (Emax 20.8 +/- 9.7%). Contrary to expectations, L- and D-NMMA relaxed endothelium-denuded rings (-30.4 +/- 8.7% L-NMMA; -45.1 +/- 11.7% D-NMMA; P < 0.05). However, neither agent caused relaxation after in vivo LPS (10.2 +/- 3.4% L-NMMA; 8.9 +/- 5.2% D-NMMA). N omega-nitro-L-arginine-methylester (L-NAME) and nitro-L-arginine (10(-6)-3 x 10(-4) M) increased tension (Emax 82.3 +/- 23.9 and 73.1 +/- 8.8%, respectively) but only when endothelium was present, and the increases were no greater in LPS-treated groups than in controls (with LPS: Emax L-NAME 87.3 +/- 16.5%; Emax nitro-L-arginine 65.7 +/- 3.3%).(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 9 (4) ◽  
pp. 391 ◽  
Author(s):  
Alicia Jawerbaum ◽  
Elida T. Gonzalez ◽  
Alicia Faletti ◽  
Virginia Novaro ◽  
Martha A. F. Gimeno

To determine whether nitric oxide (NO) generation mediates human chorionic gonadotrophin (hCG)-induced prostaglandin E (PGE) secretion by oocyte–cumulus complexes (OCC), the secretion of PGE by cultured rat OCC in the presence of NO donors and NO synthase (NOS) inhibitors was characterized. NO donors (sodium nitroprusside and 3-morpholino-sydnonimine- hydrochloride) increased PGE accumulation in OCC to values similar to those obtained in the presence of hCG. The three NOS inhibitors tested (N G -nitro-L-arginine methyl ester, NG -monomethyl-L-arginine and aminoguanidine) prevented the hCG-induced PGE accumulation in cultured OCC. This effect appears to be specific since D-enantiomers NG -nitro-D-arginine methyl ester and NG -monomethyl-D-arginine had no effect. The present results suggest that NO mediates the hCG-induced accumulation of PGE in rat OCC, a process which may occur in vivo in preovulatory follicles prior to ovulation.


2009 ◽  
Vol 107 (4) ◽  
pp. 1037-1050 ◽  
Author(s):  
Elena Grossini ◽  
Claudio Molinari ◽  
David A. S. G. Mary ◽  
Francesca Uberti ◽  
Philippe Primo Caimmi ◽  
...  

Systemic intermedin (IMD)1–47 administration has been reported to result in vasodilation and marked hypotension through calcitonin-related receptor complexes. However, its effects on the coronary circulation and the heart have not been examined in vivo. The present study was therefore planned to determine the primary in vivo effect of IMD1–47 on coronary blood flow and cardiac function and the involvement of the autonomic nervous system and nitric oxide (NO). In 35 anesthetized pigs, IMD1–47, infused into the left anterior descending coronary artery at doses of 87.2 pmol/min, at constant heart rate and arterial blood pressure, augmented coronary blood flow and cardiac function. These responses were graded in a further five pigs by increasing the infused dose of IMD1–47 between 0.81 and 204.1 pmol/min. In the 35 pigs, the blockade of cholinergic receptors (intravenous atropine, 5 pigs), α-adrenoceptors (intravenous phentolamine, 5 pigs), and β1-adrenoceptors (intravenous atenolol, 5 pigs) did not abolish the cardiac response to IMD1–47, the effects of which were prevented by blockade of β2-adrenoceptors (intravenous butoxamine, 5 pigs), NO synthase (intracoronary Nω-nitro-l-arginine methyl ester, 5 pigs), and calcitonin-related receptors (intracoronary CGRP8–37/AM22–52, 10 pigs). In porcine coronary endothelial cells, IMD1–47 induced the phosphorylation of endothelial NO synthase and NO production through cAMP signaling leading to ERK, Akt, and p38 activation, which was prevented by the inhibition of β2-adrenoceptors, calcitonin-related receptor complexes, and K+ channels. In conclusion, IMD1–47 primarily augmented coronary blood flow and cardiac function through the involvement of calcitonin-related receptor complexes and β2-adrenoreceptor-mediated NO release. The intracellular signaling involved cAMP-dependent activation of kinases and the opening of K+ channels.


2007 ◽  
Vol 293 (2) ◽  
pp. H1072-H1082 ◽  
Author(s):  
Sharyn M. Fitzgerald ◽  
Homaira Bashari ◽  
Jessica A. Cox ◽  
Helena C. Parkington ◽  
Roger G. Evans

We determined the contributions of various endothelium-derived relaxing factors to control of basal vascular tone and endothelium-dependent vasodilation in the mouse hindlimb in vivo. Under anesthesia, catheters were placed in a carotid artery, jugular vein, and femoral artery (for local hindlimb circulation injections). Hindlimb blood flow (HBF) was measured by transit-time ultrasound flowmetry. Nω-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg plus 10 mg·kg−1·h−1), to block nitric oxide (NO) production, altered basal hemodynamics, increasing mean arterial pressure (30 ± 3%) and reducing HBF (−30 ± 12%). Basal hemodynamics were not significantly altered by indomethacin (10 mg·kg−1·h−1), charybdotoxin (ChTx, 3 × 10−8 mol/l), apamin (2.5 × 10−7 mol/l), or ChTx plus apamin (to block endothelium-derived hyperpolarizing factor; EDHF). Hyperemic responses to local injection of acetylcholine (2.4 μg/kg) were reproducible in vehicle-treated mice and were not significantly attenuated by l-NAME alone, indomethacin alone, l-NAME plus indomethacin with or without co-infusion of diethlyamine NONOate to restore resting NO levels, ChTx alone, or apamin alone. Hyperemic responses evoked by acetylcholine were reduced by 29 ± 11% after combined treatment with apamin plus charybdotoxin, and the remainder was virtually abolished by additional treatment with l-NAME but not indomethacin. None of the treatments altered the hyperemic response to sodium nitroprusside (5 μg/kg). We conclude that endothelium-dependent vasodilation in the mouse hindlimb in vivo is mediated by both NO and EDHF. EDHF can fully compensate for the loss of NO, but this cannot be explained by tonic inhibition of EDHF by NO. Control of basal vasodilator tone in the mouse hindlimb is dominated by NO.


1997 ◽  
Vol 272 (2) ◽  
pp. H748-H752 ◽  
Author(s):  
D. J. Williams ◽  
P. J. Vallance ◽  
G. H. Neild ◽  
J. A. Spencer ◽  
F. J. Imms

The maternal circulation vasodilates during pregnancy. We investigated the contribution of nitric oxide to this vasodilatation. Using venous occlusion plethysmography, we measured the effect of nitric oxide synthase inhibition on hand blood flow during human pregnancy. We compared the response to a brachial artery infusion of the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA) with the response to norepinephrine in three groups of women: nonpregnant, early pregnant (9-15 wk), and late pregnant (36-41 wk). Basal hand blood flow increased significantly during late pregnancy compared with nonpregnant and early pregnant subjects (P = 0.007). L-NMMA produced a greater reduction in hand blood flow in both pregnant groups compared with nonpregnant controls (P = 0.0003). Norepinephrine produced an attenuated response in late pregnancy compared with nonpregnant and early pregnant women (P = 0.0029). If other vascular beds respond in the same way as the hand, the gestational increase in vasoconstrictor response to L-NMMA that we observed implicates increased generation of nitric oxide in the fall of peripheral vascular resistance during healthy human pregnancy.


2008 ◽  
Vol 295 (3) ◽  
pp. R829-R839 ◽  
Author(s):  
Amanda J. Edgley ◽  
Marianne Tare ◽  
Roger G. Evans ◽  
Con Skordilis ◽  
Helena C. Parkington

We assessed the relative contributions of endothelium-derived relaxing factors to renal vasodilation in vivo and determined whether these are altered in established streptozotocin-induced diabetes. In nondiabetic rats, stimulation of the endothelium by locally administered ACh or bradykinin-induced transient renal hyperemia. Neither basal renal blood flow (RBF) nor renal hyperemic responses to ACh or bradykinin were altered by blockade of prostanoid production (indomethacin) or by administration of charybdotoxin (ChTx) plus apamin to block endothelium-derived hyperpolarizing factor (EDHF). In contrast, combined blockade of nitric oxide (NO) synthase, Nω-nitro-l-arginine methyl ester (l-NAME), and prostanoid production reduced basal RBF and the duration of the hyperemic responses to ACh and bradykinin and revealed a delayed ischemic response to ACh. Accordingly, l-NAME and indomethacin markedly reduced integrated (area under the curve) hyperemic responses to ACh and bradykinin. Peak increases in RBF in response to ACh and bradykinin were not reduced by l-NAME and indomethacin but were reduced by subsequent blockade of EDHF. l-NAME plus indomethacin and ChTx plus apamin altered RBF responses to endothelium stimulation in a qualitatively similar fashion in diabetic and nondiabetic rats. The integrated renal hyperemic responses to ACh and bradykinin were blunted in diabetes, due to a diminished contribution of the component abolished by l-NAME plus indomethacin. We conclude that NO dominates integrated hyperemic responses to ACh and bradykinin in the rat kidney in vivo. After prior inhibition of NO synthase, EDHF mediates transient renal vasodilation in vivo. Renal endothelium-dependent vasodilation is diminished in diabetes due to impaired NO function.


Sign in / Sign up

Export Citation Format

Share Document