Abstract 3628: Neuronal Nitric Oxide Synthase (nNOS) Regulates Basal Flow in the Human Coronary Circulation I n Vivo

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Mike Seddon ◽  
Phil Chowienczyk ◽  
Narbeh Melikian ◽  
Rafal Dworakowski ◽  
Barbara Casadei ◽  
...  

Endothelial NO synthase (eNOS) is thought to be the major source of nitric oxide (NO) involved in the local regulation of human vascular tone. However, in studies using a selective neuronal NOS (nNOS) inhibitor S-methyl-L-thiocitrulline (SMTC), we recently reported that basal human forearm blood flow is regulated by nNOS. SMTC had no effect on acetylcholine-induced vasodilatation which however was inhibited by the non-selective NOS inhibitor N G monomethyl-L-arginine (L-NMMA). This study investigated the effects of nNOS in the human coronary circulation in vivo . We studied patients undergoing diagnostic cardiac catheterisation who had angiographically normal coronary arteries. Coronary flow velocity was measured by an intracoronary Doppler wire and epicardial artery diameter by QCA. We compared the effects of intracoronary SMTC or L-NMMA infusion on basal flow and the responses to substance P and isosorbide dinitrate (endothelium-dependent and -independent dilators, respectively). L-NMMA (25 μmol/min) reduced basal coronary flow by 22.3±5.3% and inhibited dilation to substance P (20 pmol/min) by 57±5.7% (n=8; both P<0.01). SMTC (0.625 μmol/min) also reduced basal flow (−34.8±6.3%; n=8; P<0.01), but had no effect on the response to substance P (inhibited by −2±14%; P=NS). The effects of SMTC were abolished by L-arginine (240μmol/ min; n=3). Both L-NMMA and SMTC reduced epicardial artery diameter (−2.5±0.6% and −2.8±0.9% respectively; P<0.05) but only L-NMMA reduced dilatation to substance P (5.6±1.3% before versus 3.0±0.8% after L-NMMA; P<0.05). These data indicate that local nNOS-derived NO regulates basal coronary blood flow in humans in vivo , whereas substance P-stimulated vasodilatation is eNOS-mediated. Our results indicate that nNOS and eNOS have distinct local roles in the physiological regulation of human coronary vascular tone in vivo .

2007 ◽  
Vol 293 (2) ◽  
pp. H1072-H1082 ◽  
Author(s):  
Sharyn M. Fitzgerald ◽  
Homaira Bashari ◽  
Jessica A. Cox ◽  
Helena C. Parkington ◽  
Roger G. Evans

We determined the contributions of various endothelium-derived relaxing factors to control of basal vascular tone and endothelium-dependent vasodilation in the mouse hindlimb in vivo. Under anesthesia, catheters were placed in a carotid artery, jugular vein, and femoral artery (for local hindlimb circulation injections). Hindlimb blood flow (HBF) was measured by transit-time ultrasound flowmetry. Nω-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg plus 10 mg·kg−1·h−1), to block nitric oxide (NO) production, altered basal hemodynamics, increasing mean arterial pressure (30 ± 3%) and reducing HBF (−30 ± 12%). Basal hemodynamics were not significantly altered by indomethacin (10 mg·kg−1·h−1), charybdotoxin (ChTx, 3 × 10−8 mol/l), apamin (2.5 × 10−7 mol/l), or ChTx plus apamin (to block endothelium-derived hyperpolarizing factor; EDHF). Hyperemic responses to local injection of acetylcholine (2.4 μg/kg) were reproducible in vehicle-treated mice and were not significantly attenuated by l-NAME alone, indomethacin alone, l-NAME plus indomethacin with or without co-infusion of diethlyamine NONOate to restore resting NO levels, ChTx alone, or apamin alone. Hyperemic responses evoked by acetylcholine were reduced by 29 ± 11% after combined treatment with apamin plus charybdotoxin, and the remainder was virtually abolished by additional treatment with l-NAME but not indomethacin. None of the treatments altered the hyperemic response to sodium nitroprusside (5 μg/kg). We conclude that endothelium-dependent vasodilation in the mouse hindlimb in vivo is mediated by both NO and EDHF. EDHF can fully compensate for the loss of NO, but this cannot be explained by tonic inhibition of EDHF by NO. Control of basal vasodilator tone in the mouse hindlimb is dominated by NO.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Mike Seddon ◽  
Phil Chowienczyk ◽  
Barbara Casadei ◽  
Ajay Shah

Nitric oxide (NO) has an established role in the maintenance of vascular tone, generally assumed to be mediated by endothelial NO synthase (eNOS). Previous studies using the non-selective NOS inhibitor N G monomethyl-L-arginine (L-NMMA) in humans confirmed the in vivo importance of NO but the contribution of neuronal NO synthase (nNOS) is unknown due to the lack of available selective NOS inhibitors for human use. In this study, we investigated for the first time in humans the effects of S-methyl-L-thiocitrulline (SMTC), a competitive nNOS-selective inhibitor with 17-fold selectivity over eNOS. SMTC or L-NMMA were infused into the brachial artery of healthy male volunteers and forearm blood flow was measured by venous occlusion plethysmography. SMTC 0.025, 0.05, 0.1 and 0.2 μmol/min caused a dose-dependent reduction in basal blood flow in the infused arm of 9.2±1.9, 16.2±2.9, 22.9±3.9 and 30.1±3.8% respectively (n=10; mean±SE; all P<0.01). Substantially higher doses of L-NMMA of 0.5, 1, 2 and 4 μmol/min were required to reduce basal flow by 11.5±3.0, 25.1±3.0, 33.7±3.0 and 37.4±3.1% respectively (n=10). The highest dose of SMTC (ie, 0.2 μmol/min) tested had no significant effect on the vasodilator response to acetylcholine (ACh): Ach 40 and 80nmol/min increased blood flow by 3.93±0.64 and 5.54±0.69 ml/min/100mls tissue above baseline during saline co-infusion versus 3.95±0.69 and 4.90±0.71 ml/min/100mls tissue during SMTC co-infusion (n=10; P=NS). In contrast, L-NMMA significantly reduced the response to these doses of ACh by 64±9.9 and 60±10% (n=10; both P<0.01). The effect of SMTC on basal blood flow was completely abolished in the presence of the NOS substrate L-arginine (n=6; P<0.001) but was unaffected by the stereoisomer D-arginine (n=6). SMTC had no effect on the vasodilator response to sodium nitroprusside (n=5). In conclusion , SMTC reduced basal blood flow by stereospecific inhibition of the L-arginine:NO pathway but did not affect the eNOS-mediated vasodilator response to ACh. These results indicate that nNOS has a crucial role in the regulation of basal vascular tone in the human forearm in vivo .


2017 ◽  
Vol 312 (4) ◽  
pp. R549-R558 ◽  
Author(s):  
Andreas Ekström ◽  
Michael Axelsson ◽  
Albin Gräns ◽  
Jeroen Brijs ◽  
Erik Sandblom

Thermal tolerance in fish may be related to an oxygen limitation of cardiac function. While the hearts of some fish species receive oxygenated blood via a coronary circulation, the influence of this oxygen supply on thermal tolerance and cardiac performance during warming remain unexplored. Here, we analyzed the effect in vivo of acute warming on coronary blood flow in adult sexually mature rainbow trout ( Onchorhynchus mykiss) and the consequences of chronic coronary ligation on cardiac function and thermal tolerance in juvenile trout. Coronary blood flow at 10°C was higher in females than males (0.56 ± 0.08 vs. 0.30 ± 0.08 ml·min−1·g ventricle−1), and averaged 0.47 ± 0.07 ml·min−1·g ventricle−1 across sexes. Warming increased coronary flow in both sexes until 14°C, at which it peaked and plateaued at 0.78 ± 0.1 and 0.61 ± 0.1 ml·min−1·g ventricle−1 in females and males, respectively. Thus, the scope for increasing coronary flow was 101% in males, but only 39% in females. Coronary-ligated juvenile trout exhibited elevated heart rate across temperatures, reduced Arrhenius breakpoint temperature for heart rate (23.0 vs. 24.6°C), and reduced upper critical thermal maximum (25.3 vs. 26.3°C). To further analyze the effects of coronary flow restriction on cardiac rhythmicity, electrocardiogram characteristics were determined before and after coronary occlusion in anesthetized trout. Occlusion resulted in reduced R-wave amplitude and an elevated S-T segment, indicating myocardial ischemia, while heart rate was unaffected. This suggests that the tachycardia in ligated trout across temperatures in vivo was mainly to compensate for reduced cardiac contractility to maintain cardiac output. Moreover, our findings show that coronary flow increases with warming in a sex-specific manner. This may improve whole animal thermal tolerance, presumably by sustaining cardiac oxygenation and contractility at high temperatures.


1995 ◽  
Vol 269 (6) ◽  
pp. R1333-R1338 ◽  
Author(s):  
G. I. Gorodeski ◽  
T. Yang ◽  
M. N. Levy ◽  
J. Goldfarb ◽  
W. H. Utian

Estrogen or its vehicle was given daily to three groups of ovariectomized rabbits for various lengths of time, after which coronary flow was measured in their isolated perfused hearts. In one group, intramuscular injections of estrogen (40 micrograms/kg) for 7 or 14 days increased coronary flow by 40-50% (P < 0.05). In rabbits given estrogen intramuscularly for 7 days, the coronary flow returned to the basal level within 7 days after the estrogen injections were discontinued. In a second group of animals, intravenous injections of estrogen (10 micrograms/kg) for 4 days increased the coronary flow by 45% (P < 0.01). In a third group, we administered the estrogen transdermally for 4 days, and we measured the plasma estrogen levels at the end of this period. The coronary flow in this group was increased by 52% (P < 0.001), and the plasma estrogen levels ranged from 39 to 800 pg/ml. In all groups of experiments, the increments in coronary flow evoked by estrogen were virtually abolished by NG-nitro-L-arginine, an inhibitor of nitric oxide synthase. We conclude that estrogen regulates coronary blood flow, in part by upregulating nitric oxide synthase in the coronary vasculature.


2009 ◽  
Vol 48 (02) ◽  
pp. 113-122 ◽  
Author(s):  
D. Neglia ◽  
G. Ferrari ◽  
F. Bernini ◽  
M. Micalizzi ◽  
A L’Abbate ◽  
...  

Summary Objectives: Mathematical modeling of the cardiovascular system is a powerful tool to extract physiologically relevant information from multi-parametric experiments. The purpose of the present work was to reproduce by means of a computer simulator, systemic and coronary measurements obtained by in vivo experiments in the pig. Methods: We monitored in anesthetized open-chest pig the phasic blood flow of the left descending coronary artery, aortic pressure, left ventricular pressure and volume. Data were acquired before, during, and after caval occlusion.Inside the software simulator (CARDIOSIM©) of the cardiovascular system, coronary circulation was modeled in three parallel branching sections. Both systemic and pulmonary circulations were simulated using a lumped parameter mathematical model. Variable elastance model reproduced Starling’s law of the heart. Results: Different left ventricular pressure-volume loops during experimental caval occlusion and simulated cardiac loops are presented. The sequence of coronary flow-aortic pressure loops obtained in vivo during caval occlusion together with the simulated loops reproduced by the software simulator are reported. Finally experimental and simulated instantaneous coronary blood flow waveforms are shown. Conclusions: The lumped parameter model of the coronary circulation, together with the cardiovascular system model, is capable of reproducing the changes during caval occlusion, with the profound shape deformation of the flow signal observed during the in vivo experiment. In perspectives, the results of the present model could offer new tool for studying the role of the different determinants of myocardial perfusion, by using the coronary loop shape as a “sensor” of ventricular mechanics in various physiological and pathophysiological conditions.


1997 ◽  
Vol 78 (04) ◽  
pp. 1242-1248 ◽  
Author(s):  
David E Newby ◽  
Robert A Wright ◽  
Christopher A Ludlam ◽  
Keith A A Fox ◽  
Nicholas A Boon ◽  
...  

SummaryThe effects on blood flow and plasma fibrinolytic and coagulation parameters of intraarterial substance P, an endothelium dependent vasodilator, and sodium nitroprusside, a control endothelium independent vasodilator, were studied in the human forearm circulation. At subsystemic locally active doses, both substance P (2-8 pmol/min) and sodium nitroprusside (2-8 μg/min) caused dose-dependent vasodilatation (p <0.001 for both) without affecting plasma concentrations of PAI-1, von Willebrand factor antigen or factor VIII:C activity. Substance P caused local increases in t-PA antigen and activity (p <0.001) in the infused arm while sodium nitroprusside did not. At higher doses, substance P increased blood flow and t-PA concentrations in the noninfused arm. We conclude that brief, locally active and subsystemic infusions of intraarterial substance P cause a rapid and substantial local release of t-PA which appear to act via a flow and nitric oxide independent mechanism. This model should provide a useful and selective method of assessing the in vivo capacity of the forearm endothelium to release t-PA acutely.


2012 ◽  
Vol 303 (2) ◽  
pp. H216-H223 ◽  
Author(s):  
Giacinta Guarini ◽  
Vahagn A. Ohanyan ◽  
John G. Kmetz ◽  
Daniel J. DelloStritto ◽  
Roslin J. Thoppil ◽  
...  

We have previously shown transient receptor potential vanilloid subtype 1 (TRPV1) channel-dependent coronary function is compromised in pigs with metabolic syndrome (MetS). However, the mechanisms through which TRPV1 channels couple coronary blood flow to metabolism are not fully understood. We employed mice lacking TRPV1 [TRPV1(−/−)], db/db diabetic, and control C57BKS/J mice to determine the extent to which TRPV1 channels modulate coronary function and contribute to vascular dysfunction in diabetic cardiomyopathy. Animals were subjected to in vivo infusion of the TRPV1 agonist capsaicin to examine the hemodynamic actions of TRPV1 activation. Capsaicin (1–100 μg·kg−1·min−1) dose dependently increased coronary blood flow in control mice, which was inhibited by the TRPV1 antagonist capsazepine or the nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine methyl ester (l-NAME). In addition, the capsaicin-mediated increase in blood flow was attenuated in db/db mice. TRPV1(−/−) mice exhibited no changes in coronary blood flow in response to capsaicin. Vasoreactivity studies in isolated pressurized mouse coronary microvessels revealed a capsaicin-dependent relaxation that was inhibited by the TRPV1 inhibitor SB366791 l-NAME and to the large conductance calcium-sensitive potassium channel (BK) inhibitors iberiotoxin and Penetrim A. Similar to in vivo responses, capsaicin-mediated relaxation was impaired in db/db mice compared with controls. Changes in pH (pH 7.4–6.0) relaxed coronary vessels contracted to the thromboxane mimetic U46619 in all three groups of mice; however, pH-mediated relaxation was blunted in vessels obtained from TRPV1(−/−) and db/db mice compared with controls. Western blot analysis revealed decreased myocardial TRPV1 protein expression in db/db mice compared with controls. Our data reveal TRPV1 channels mediate coupling of myocardial blood flow to cardiac metabolism via a nitric oxide-dependent, BK channel-dependent pathway that is corrupted in diabetes.


1991 ◽  
Vol 81 (5) ◽  
pp. 695-700 ◽  
Author(s):  
Alison Calver ◽  
Joe Collier ◽  
Patrick Vallance

1. l-Arginine is the physiological precursor for the formation of endothelium-derived nitric oxide. The synthesis of nitric oxide is stereospecific: d-arginine is not a substrate for nitric oxide synthase. It is possible that the provision of excess l-arginine substrate might increase the vascular synthesis of nitric oxide. We have examined this possibility by studying the effects of local infusion of l-and d-arginine in the forearm resistance bed and the superficial dorsal hand veins of healthy subjects. 2. Drugs were either infused locally into a vein on the back of the hand and then the vein diameter was measured using a linear displacement technique, or into the brachial artery and then the forearm blood flow was measured by venous occlusion plethysmography. 3. In the superficial hand veins, l- and d-arginine free base and l- and d-arginine hydrochloride (all four preparations at a dose of 5 μmol/min) all caused a significant increase in venous diameter. The responses of the l-and d-enantiomers did not differ significantly from one another. 4. In the forearm resistance bed, l- and d-arginine free base and l-arginine hydrochloride were without effect at doses of 10 and 40 μmol/min. However, at doses of 160 μmol/min all three preparations of arginine caused a significant increase in forearm blood flow compared with control values. The responses to the three preparations of arginine did not differ significantly from one another. 5. These results show that arginine in high dose is a vasodilator in both human resistance vessels and superficial veins in vivo. The response to arginine was not stereospecific: both the l- and d-enantiomers had the same effect. The dilator effect of high-dose arginine showed neither arterio-nor veno-selectivity. 6. This suggests that the hypotensive effect of systemic infusions of l-arginine in man is mediated by peripheral vasodilatation. It is not possible to ascribe the actions of arginine supplementation in this study to activation of the l-arginine/nitric oxide pathway through the provision of excess substrate.


2005 ◽  
Vol 289 (2) ◽  
pp. H916-H923 ◽  
Author(s):  
Nelson N. Orie ◽  
Patrick Vallance ◽  
Dean P. Jones ◽  
Kevin P. Moore

It is now established that S-nitroso-albumin (SNO-albumin) circulates at low nanomolar concentrations under physiological conditions, but concentrations may increase to micromolar levels during disease states (e.g., cirrhosis or endotoxemia). This study tested the hypothesis that high concentrations of SNO-albumin observed in some diseases modulate vascular function and that it acts as a stable reservoir of nitric oxide (NO), releasing this molecule when the concentrations of low-molecular-weight thiols are increased. SNO-albumin was infused into rats to increase the plasma concentration from <50 nmol/l to ∼4 μmol/l. This caused a 29 ± 6% drop in blood pressure, 20 ± 4% decrease in aortic blood flow, and a 25 ± 14% reduction of renal blood flow within 10 min. These observations were in striking contrast to those of an infused arterial vasodilator (hydralazine), which increased aortic blood flow, and suggested that SNO-albumin acts primarily as a venodilator in vivo. This was confirmed by the observations that glyceryl trinitrate (a venodilator) led to similar hemodynamic changes and that the hemodynamic effects of SNO-albumin are reversed by infusion of colloid. Infusion of N-acetylcysteine into animals with artificially elevated plasma SNO-albumin concentrations led to the rapid decomposition of SNO-albumin in vivo and reproduced the hemodynamic effects of SNO-albumin infusion. These data demonstrate that SNO-albumin acts primarily as a venodilator in vivo and represents a stable reservoir of NO that can release NO when the concentrations of low-molecular-weight thiols are elevated.


Author(s):  
Valentina Magagnin ◽  
Maurizio Turiel ◽  
Sergio Cerutti ◽  
Luigi Delfino ◽  
Enrico Caiani

The coronary flow reserve (CFR) represents an important functional parameter to assess epicardial coronary stenosis and to evaluate the integrity of coronary microcirculation (Kern, 2000; Sadamatsu, Tashiro, Maehira, & Yamamoto, 2000). CFR can be measured, during adenosine or dipyridamole infusion, as the ratio of maximal (pharmacologically stimulated) to baseline (resting) diastolic coronary blood flow peak. Even in absence of stenosis in epicardial coronary artery, the CFR may be decreased when coronary microvascular circulation is compromised by arterial hypertension with or without left ventricular hypertrophy, diabetes mellitus, hypercholesterolemia, syndrome X, hypertrophic cardiomyopathy, and connective tissue diseases (Dimitrow, 2003; Strauer, Motz, Vogt, & Schwartzkopff, 1997). Several methods have been established for measuring CFR: invasive (intracoronary Doppler flow wire) (Caiati, Montaldo, Zedda, Bina, & Iliceto, 1999b; Lethen, Tries, Brechtken, Kersting, & Lambertz, 2003a; Lethen, Tries, Kersting, & Lambertz, 2003b), semi-invasive and scarcely feasible (transesophageal Doppler echocardiography) (Hirabayashi, Morita, Mizushige, Yamada, Ohmori, & Tanimoto, 1991; Iliceto, Marangelli, Memmola, & Rizzon, 1991; Lethen, Tries, Michel, & Lambertz, 2002; Redberg, Sobol, Chou, Malloy, Kumar, & Botvinick, 1995), or extremely expensive and scarcely available methods (PET, SPECT, MRI) (Caiati, Cioglia, Montaldo, Zedda, Rubini, & Pirisi, 1999a; Daimon, Watanabe, Yamagishi, Muro, Akioka, & Hirata, 2001; Koskenvuo, Saraste, Niemi, Knuuti, Sakuma, & Toikka, 2003; Laubenbacher, Rothley, Sitomer, Beanlands, Sawada, & Sutor, 1993; Picano, Parodi, Lattanzi, Sambuceti, Andrade, & Marzullo, 1994; Saraste, Koskenvuo, Knuuti, Toikka, Laine, & Niemi, 2001; Williams, Mullani, Jansen, & Anderson, 1994), thus their clinical use is limited (Dimitrow, 2003). In addition, PET and intracoronary Doppler flow wire involve radiation exposure, with inherent risk, environmental impact, and biohazard connected with use of ionizing testing (Picano, 2003a). In the last decade, the development of new ultrasound equipments and probes has made possible the noninvasive evaluation of coronary blood velocity by Doppler echocardiography, using a transthoracic approach. In this way, the peak diastolic coronary flow velocity reserve (CFVR) can be estimated as the ratio of the maximal (pharmacologically stimulated) to baseline (resting) diastolic coronary blood flow velocity peak measured from the Doppler tracings. Several studies have shown that peak diastolic CFVR, computed in the distal portion of the left anterior descending (LAD) coronary artery, correlates with CFR obtained by more invasive techniques. This provided a reliable and non invasive tool for the diagnosis of LAD coronary artery disease (Caiati et al., 1999b; Caiati, Montaldo, Zedda, Montisci, Ruscazio, & Lai, 1999c; Hozumi, Yoshida, Akasaka, Asami, Ogata, & Takagi, 1998; Koskenvuo et al., 2003; Saraste et al., 2001).


Sign in / Sign up

Export Citation Format

Share Document