Abstract MP065: Genetic Loci Associated With Plasma Phospholipid Fatty Acids in the De Novo Lipogenesis Pathway: A Meta-analysis of Genome-wide Association Studies From the Charge Consortium

Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Jason H Wu ◽  
Rozenn N Lemaitre ◽  
Toshiko Tanaka ◽  
Weihua Guan ◽  
Ani Manichaikul ◽  
...  

Background Palmitic acid (16:0), stearic acid (18:0), palmitoleic acid (16:1n-7), and oleic acid (18:1n-9) are major saturated and mono-unsaturated fatty acids that are synthesized via de novo lipogenesis (DNL) or obtained from the diet. Circulating levels of these fatty acids are linked to several diseases including diabetes and heart disease. Prior family and twin studies suggest high heritability of circulating levels, but potential genes involved are unknown. Objective To carry out a Genome-Wide Association Study (GWAS) to investigate genetic determinants of circulating levels of these fatty acids. Methods GWAS in 5 population-based cohorts (n=8,961) of European ancestry. Each study conducted linear regression analysis using an additive genetic model. All analyses were adjusted for age, sex, site of recruitment, and principal components to account for possible population genetic substructure where appropriate. Study-specific results were combined using inverse-variance weighted meta-analysis. Results We found SNPs at 7 novel loci linked at GWA significance to levels of one or more of these fatty acids ( Figure ). Directionality is reported for minor alleles. SNPs in ALG14 were associated with higher levels of 16:0 ( P =2.7x10 -11 ) and lower levels of 18:0 ( P =2.7x10 -11 ). SNPs in FADS1 /2 were associated with higher 18:1n-9 ( P =2.2x10 -32 ) and 16:1n-7 ( P =6.6x10 -13 ), and lower 18:0 ( P =1.3x10 -20 ). SNPs in LPGAT1 were associated with lower 18:0 ( P =2.8x10 -9 ). SNPs in GCKR ( P =9.8x10 -10 ) and HIF1AN ( P =5.7x10 -9 ) were associated with higher 16:1n-7, whereas those in PKD2L1 ( P =5.7x10 -15 ) and another locus on chromosome 2 (not near known genes) were associated with lower 16:1n-7. Conclusion Our findings provide novel evidence that common variations in genes with diverse functions, including protein glycosylation, polyunsaturated fatty acid metabolism, phospholipid modeling, and glucose- and oxygen-sensing pathways, are associated with circulating levels of fatty acids in the DNL pathway.

2018 ◽  
Vol 28 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Sara L Pulit ◽  
Charli Stoneman ◽  
Andrew P Morris ◽  
Andrew R Wood ◽  
Craig A Glastonbury ◽  
...  

Abstract More than one in three adults worldwide is either overweight or obese. Epidemiological studies indicate that the location and distribution of excess fat, rather than general adiposity, are more informative for predicting risk of obesity sequelae, including cardiometabolic disease and cancer. We performed a genome-wide association study meta-analysis of body fat distribution, measured by waist-to-hip ratio (WHR) adjusted for body mass index (WHRadjBMI), and identified 463 signals in 346 loci. Heritability and variant effects were generally stronger in women than men, and we found approximately one-third of all signals to be sexually dimorphic. The 5% of individuals carrying the most WHRadjBMI-increasing alleles were 1.62 times more likely than the bottom 5% to have a WHR above the thresholds used for metabolic syndrome. These data, made publicly available, will inform the biology of body fat distribution and its relationship with disease.


2019 ◽  
Vol 8 (5) ◽  
pp. 692
Author(s):  
Eun Pyo Hong ◽  
Bong Jun Kim ◽  
Jin Pyeong Jeon

Previous genome-wide association studies did not show a consistent association between the BOLL gene (rs700651, 2q33.1) and intracranial aneurysm (IA) susceptibility. We aimed to perform an updated meta-analysis for the potential IA-susceptibility locus in large-scale multi-ethnic populations. We conducted a systematic review of studies identified by an electronic search from January 1990 to March 2019. The overall estimates of the “G” allele of rs700651, indicating IA susceptibility, were calculated under the fixed- and random-effect models using the inverse-variance method. Subsequent in silico function and cis-expression quantitative trait loci (cis-eQTL) analyses were performed to evaluate biological functions and genotype-specific expressions in human tissues. We included 4513 IA patients and 13,506 controls from five studies with seven independent populations: three European-ancestry, three Japanese, and one Korean population. The overall result showed a genome-wide significance threshold between rs700651 and IA susceptibility after controlling for study heterogeneity (OR = 1.213, 95% CI: 1.135–1.296). Subsequent cis-eQTL analysis showed significant genome-wide expressions in three human tissues, i.e., testis (p = 8.04 × 10−15 for ANKRD44), tibial nerves (p = 3.18 × 10−10 for SF3B1), and thyroid glands (p = 4.61 × 10−9 for SF3B1). The rs700651 common variant of the 2q33.1 region may be involved in genetic mechanisms that increase the risk of IA and may play crucial roles in regulatory functions.


2018 ◽  
Author(s):  
Sara L. Pulit ◽  
Charli Stoneman ◽  
Andrew P. Morris ◽  
Andrew R. Wood ◽  
Craig A. Glastonbury ◽  
...  

AbstractOne in four adults worldwide are either overweight or obese. Epidemiological studies indicate that the location and distribution of excess fat, rather than general adiposity, is most informative for predicting risk of obesity sequellae, including cardiometabolic disease and cancer. We performed a genome-wide association study meta-analysis of body fat distribution, measured by waist-to-hip ratio adjusted for BMI (WHRadjBMI), and identified 463 signals in 346 loci. Heritability and variant effects were generally stronger in women than men, and we found approximately one-third of all signals to be sexually dimorphic. The 5% of individuals carrying the most WHRadjBMI-increasing alleles were 1.62 times more likely than the bottom 5% to have a WHR above the thresholds used for metabolic syndrome. These data, made publicly available, will inform the biology of body fat distribution and its relationship with disease.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Caroline M. Nievergelt ◽  
Adam X. Maihofer ◽  
Torsten Klengel ◽  
Elizabeth G. Atkinson ◽  
Chia-Yen Chen ◽  
...  

Abstract The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.


Circulation ◽  
2015 ◽  
Vol 131 (suppl_1) ◽  
Author(s):  
Nora Franceschini ◽  
Adrienne Stilp ◽  
Christina L Wassel ◽  
Holly J Mattix-Kramer ◽  
Michael F Flessner ◽  
...  

Introduction: Genome wide association studies have identified genetic variants in the Cubillin gene ( CUBN ) that explain inter-individual variation in urine albumin-to-creatinine excretion (UACR) in populations. These studies have not included Hispanics/Latinos, the fast growing minority population in the U.S., who has also high prevalence of chronic kidney disease and its risk factors. Hypothesis: By leveraging on population admixture of Hispanics and using a genome wide association approach, we hypothesized that novel loci associated with UACR would be identified. Methods: We used data from 12,212 self-identified Hispanic individuals recruited in a community-based study, aged 18-74 years at screening (2008-2011), and randomly selected from households in four U.S. field centers (Chicago, IL; Miami, FL; Bronx, NY; San Diego, CA). Urine albumin (mg/dl) and creatinine (g/dl) were measured at the baseline exam. UACR was log-transformed for analysis. Individuals were excluded if reporting to have end-stage renal disease. Genotyping was performed using a custom Illumina Omni2.5M array. Imputation of variants was performed using 1000 Genome Project data from cosmopolitan HapMap samples. After quality control of imputed data, we performed mixed linear regression analyses that accounted for the sampling strategy and family relatedness, for variants with minor allele frequency (MAF) > 0.01 and imputation quality > 0.3. We used additive genetic models and adjusted for age, sex, and principal components which were estimated from the data. In a secondary analysis, we also examine the association of significant variants with kidney function using estimated glomerular filtration rate (eGFR) equations. Results: Among 12,212 participants, 41% were men, and mean age was 46 (SD =13). There was little evidence for genome wide inflation (lambda =1.024). We identified significant associations of single nucleotide polymorphisms (SNPs) with UACR at two loci: CUBN and HBB . The CUBN SNP (chr10:16966414, p=2.1x10-8) is an indel variant with MAF of 0.14, which was not in linkage disequilibrium with previously reported SNP rs1801239 (rsq=0.38, p=1.3x10-4) identified in individuals of European ancestry. The HBB SNP is a missense variant which results in an E [Glu] ⇒ A [Ala] substitution in the beta-globin chain of hemoglobin and a cause of the Mendelian disorder sickle cell anemia (rs334, T allele frequency =0.01, beta=0.44, SE=0.06, p=7.6x10-12). rs344 was not associated with eGFR in our data (p>0.05). Conclusion: This study identified a novel association of a sickle cell missense variant with UACR in Hispanics, and provided evidence for allelic heterogeneity at the CUBN locus. Our findings suggest a role for Mendelian gene variants in increased albuminuria in Hispanic populations with admixture.


Circulation ◽  
2016 ◽  
Vol 133 (suppl_1) ◽  
Author(s):  
James S Floyd ◽  
Colleen Sitlani ◽  
Christy L Avery ◽  
Eric A Whitsel ◽  
Leslie Lange ◽  
...  

Introduction: Sulfonylureas are a commonly-used class of diabetes medication that can prolong the QT-interval, which is a leading cause of drug withdrawals from the market given the possible risk of life-threatening arrhythmias. Previously, we conducted a meta-analysis of genome-wide association studies of sulfonylurea-genetic interactions on QT interval among 9 European-ancestry (EA) cohorts using cross-sectional data, with null results. To improve our power to identify novel drug-gene interactions, we have included repeated measures of medication use and QT interval and expanded our study to include several additional cohorts, including African-American (AA) and Hispanic-ancestry (HA) cohorts with a high prevalence of sulfonylurea use. To identify potentially differential effects on cardiac depolarization and repolarization, we have also added two phenotypes - the JT and QRS intervals, which together comprise the QT interval. Hypothesis: The use of repeated measures and expansion of our meta-analysis to include diverse ancestry populations will allow us to identify novel pharmacogenomic interactions for sulfonylureas on the ECG phenotypes QT, JT, and QRS. Methods: Cohorts with unrelated individuals used generalized estimating equations to estimate interactions; cohorts with related individuals used mixed effect models clustered on family. For each ECG phenotype (QT, JT, QRS), we conducted ancestry-specific (EA, AA, HA) inverse variance weighted meta-analyses using standard errors based on the t-distribution to correct for small sample inflation in the test statistic. Ancestry-specific summary estimates were combined using MANTRA, an analytic method that accounts for differences in local linkage disequilibrium between ethnic groups. Results: Our study included 65,997 participants from 21 cohorts, including 4,020 (6%) sulfonylurea users, a substantial increase from the 26,986 participants and 846 sulfonylureas users in the previous meta-analysis. Preliminary ancestry-specific meta-analyses have identified genome-wide significant associations (P < 5х10–8) for each ECG phenotype, and analyses with MANTRA are in progress. Conclusions: In the setting of the largest collection of pharmacogenomic studies to date, we used repeated measurements and leveraged diverse ancestry populations to identify new pharmacogenomic loci for ECG traits associated with cardiovascular risk.


Stroke ◽  
2020 ◽  
Vol 51 (8) ◽  
pp. 2454-2463
Author(s):  
Keith L. Keene ◽  
Hyacinth I. Hyacinth ◽  
Joshua C. Bis ◽  
Steven J. Kittner ◽  
Braxton D. Mitchell ◽  
...  

Background and Purpose: Stroke is a complex disease with multiple genetic and environmental risk factors. Blacks endure a nearly 2-fold greater risk of stroke and are 2× to 3× more likely to die from stroke than European Americans. Methods: The COMPASS (Consortium of Minority Population Genome-Wide Association Studies of Stroke) has conducted a genome-wide association meta-analysis of stroke in >22 000 individuals of African ancestry (3734 cases, 18 317 controls) from 13 cohorts. Results: In meta-analyses, we identified one single nucleotide polymorphism (rs55931441) near the HNF1A gene that reached genome-wide significance ( P =4.62×10 −8 ) and an additional 29 variants with suggestive evidence of association ( P <1×10 −6 ), representing 24 unique loci. For validation, a look-up analysis for a 100 kb region flanking the COMPASS single nucleotide polymorphism was performed in SiGN (Stroke Genetics Network) Europeans, SiGN Hispanics, and METASTROKE (Europeans). Using a stringent Bonferroni correction P value of 2.08×10 −3 (0.05/24 unique loci), we were able to validate associations at the HNF1A locus in both SiGN ( P =8.18×10 −4 ) and METASTROKE ( P =1.72×10 −3 ) European populations. Overall, 16 of 24 loci showed evidence for validation across multiple populations. Previous studies have reported associations between variants in the HNF1A gene and lipids, C-reactive protein, and risk of coronary artery disease and stroke. Suggestive associations with variants in the SFXN4 and TMEM108 genes represent potential novel ischemic stroke loci. Conclusions: These findings represent the most thorough investigation of genetic determinants of stroke in individuals of African descent, to date.


2019 ◽  
Author(s):  
Cassandra N Spracklen ◽  
Momoko Horikoshi ◽  
Young Jin Kim ◽  
Kuang Lin ◽  
Fiona Bragg ◽  
...  

SUMMARYMeta-analyses of genome-wide association studies (GWAS) have identified >240 loci associated with type 2 diabetes (T2D), however most loci have been identified in analyses of European-ancestry individuals. To examine T2D risk in East Asian individuals, we meta-analyzed GWAS data in 77,418 cases and 356,122 controls. In the main analysis, we identified 298 distinct association signals at 178 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 56 loci newly implicated in T2D predisposition. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. New associations include signals in/near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect muscle and adipose differentiation. At another locus, eQTLs at two overlapping T2D signals act through two genes, NKX6-3 and ANK1, in different tissues. Association studies in diverse populations identify additional loci and elucidate disease genes, biology, and pathways.Type 2 diabetes (T2D) is a common metabolic disease primarily caused by insufficient insulin production and/or secretion by the pancreatic β cells and insulin resistance in peripheral tissues1. Most genetic loci associated with T2D have been identified in populations of European (EUR) ancestry, including a recent meta-analysis of genome-wide association studies (GWAS) of nearly 900,000 individuals of European ancestry that identified >240 loci influencing the risk of T2D2. Differences in allele frequency between ancestries affect the power to detect associations within a population, particularly among variants rare or monomorphic in one population but more frequent in another3,4. Although smaller than studies in European populations, a recent T2D meta-analysis in almost 200,000 Japanese individuals identified 28 additional loci4. The relative contributions of different pathways to the pathophysiology of T2D may also differ between ancestry groups. For example, in East Asian (EAS) populations, T2D prevalence is greater than in European populations among people of similar body mass index (BMI) or waist circumference5. We performed the largest meta-analysis of East Asian individuals to identify new genetic associations and provide insight into T2D pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document