Abstract 158: Association Between Initial Body Temperature and Neurologic Outcomes of Out-Of-Hospital Cardiac Arrest Undergoing Targeted Temperature Management

Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Jong Hwan Kim ◽  
Jeong Ho Park ◽  
Sun Young Lee ◽  
Sang Do Shin ◽  
Jieun Pak ◽  
...  

Objectives: Targeted temperature management (TTM) is the core post-resuscitation care to minimize neurologic deficit after out-of-hospital cardiac arrest (OHCA). Uncontrolled body temperature of patients may reflect the thermoregulation ability which can be associated with neurologic damage during arrest. The aim of this study was to investigate the association between initial body temperature (BT) and neurologic outcomes in OHCA patients who underwent TTM. Methods: We used nationwide OHCA database from January 2016 to December 2017. Adult OHCA patients with presumed cardiac etiology who underwent TTM after return-of-spontaneous circulation (ROSC) were included. The main exposure was a BT at initiation of TTM which was categorized into 3 groups: low (-35.5°c), middle(35.6°c-37.4°c), and high BT (37.5°c-). The primary outcome was good neurologic outcome (cerebral performance categories (CPC) 1 or 2). Adjusted ratios (AORs) and 95% confidence intervals (CIs) were estimated to evaluate association between initial BT of TTM and outcome in multivariable logistic regression model. Stratified subgroup analyses were according to the target temperature of TTM (hypothermia vs normothermia). Results: Of a total of 744 patients, 208 (28.0%) patients were low initial BT group and 471 (63.3%) patients were normal initial BT group and 65 (8.7%) patients were high initial BT group. Good neurological recovery rate was 13.9% in low initial BT group, 41.8% in middle initial BT group and 36.9% in high initial BT group. The adjusted odds ratios for good neurologic recovery were 0.281 (95% confidence interval [CI] 0.17-0.47) in low BT group and 0.65 (95% CI 0.34-1.27) in high BT group compared with normal initial BT group. Similar results were also found regardless of target temperature of TTM. Conclusion: Low initial BT of TTM was associated with unfavorable neurologic recovery for OHCA patients who underwent TTM after ROSC.

Author(s):  
Calvin Huynh ◽  
Jevons Lui ◽  
Vala Behbahani ◽  
Ashley Thompson Quan ◽  
Amanda Morris ◽  
...  

Abstract Background Targeted temperature management (TTM) is endorsed by various guidelines to improve neurologic outcomes following cardiac arrest. Shivering, a consequence of hypothermia, can counteract the benefits of TTM. Despite its frequent occurrence, consensus guidelines provide minimal guidance on the management of shivering. The purpose of this study was to evaluate the impact of a pharmacologic antishivering protocol in patients undergoing TTM following cardiac arrest on the incidence of shivering. Methods A retrospective observational cohort study at a large academic medical center of adult patients who underwent TTM targeting 33 °C following out-of-hospital (OHCA) or in-hospital cardiac arrest (IHCA) was conducted between January 2013 and January 2019. Patients were included in the preprotocol group if they received TTM prior to the initiation of a pharmacologic antishivering protocol in 2015. The primary outcome was incidence of shivering between pre- and postprotocol patients. Secondary outcomes included time from arrest (IHCA) or admission to the hospital (OHCA) to goal body temperature, total time spent at goal body temperature, and percentage of patients alive at discharge. All pharmacologic agents listed as part of the antishivering protocol were recorded. Results Fifty-one patients were included in the preprotocol group, and 80 patients were included in the postprotocol group. There were no significant differences in baseline characteristics between the groups, including percentage of patients experiencing OHCA (75% vs. 63%, p = 0.15) and time from arrest to return of spontaneous circulation (17.5 vs. 17.9 min, p = 0.96). Incidence of patients with shivering was significantly reduced in the postprotocol group (57% vs. 39%, p = 0.03). Time from arrest (IHCA) or admission to the hospital (OHCA) to goal body temperature was similar in both groups (5.1 vs. 5.3 h, p = 0.57), in addition to total time spent at goal body temperature (17.7 vs. 18 h, p = 0.93). The percentage of patients alive at discharge was significantly improved in the postprotocol group (35% vs. 55%, p = 0.02). Patients in the postprotocol group received significantly more buspirone (4% vs. 73%, p < 0.01), meperidine (8% vs. 34%, p < 0.01), and acetaminophen (12% vs. 65%, p < 0.01) as part of the pharmacologic antishivering protocol. Use of neuromuscular blockade significantly decreased post protocol (19% vs. 6%, p = 0.02). Conclusions In patients undergoing TTM following cardiac arrest, the implementation of a pharmacologic antishivering protocol reduced the incidence of shivering and the use neuromuscular blocking agents. Prospective data are needed to validate the results and further evaluate the safety and efficacy of an antishivering protocol on clinical outcomes.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Ian R Drennan ◽  
Steve Lin ◽  
Kevin E Thorpe ◽  
Jason E Buick ◽  
Sheldon Cheskes ◽  
...  

Introduction: Targeted temperature management (TTM) reduces neurologic injury from out-of-hospital cardiac arrest (OHCA). As the risk of neurologic injury increases with prolonged cardiac arrests, the benefit of TTM may depend upon cardiac arrest duration. We hypothesized that there is a time-dependent effect of TTM on neurologic outcomes from OHCA. Methods: Retrospective, observational study of the Toronto RescuNET Epistry-Cardiac Arrest database from 2007 to 2014. We included adult (>18) OHCA of presumed cardiac etiology that remained comatose (GCS<10) after a return of spontaneous circulation. We used multivariable logistic regression to determine the effect of TTM and the duration of cardiac arrest on good neurologic outcome (Modified Rankin Scale (mRS) 0-3) and survival to hospital discharge while controlling for other known predictors. Results: There were 1496 patients who met our inclusion criteria, of whom 981 (66%) received TTM. Of the patients who received TTM, 59% had a good neurologic outcome compared to 39% of patients who did not receive TTM (p< 0.001). After adjusting for the Utstein variables, use of TTM was associated with improved neurologic outcome (OR 1.60, 95% CI 1.10-2.32; p = 0.01) but not with survival to discharge (OR 1.23, 95% CI 0.90-1.67; p = 0.19). The impact of TTM on neurologic outcome was dependent on the duration of cardiac arrest (p<0.05) (Fig 1). Other significant predictors of good neurologic outcome were younger age, public location, initial shockable rhythm, and shorter duration of cardiac arrest (all p values < 0.05). A subgroup analysis found the use of TTM to be associated with neurologic outcome in both shockable (p = 0.01) and non-shockable rhythms (p = 0.04) but was not associated with survival to discharge in either group (p = 0.12 and p = 0.14 respectively). Conclusion: The use of TTM was associated with improved neurologic outcome at hospital discharge. Patients with prolonged durations of cardiac arrest benefited more from TTM.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Min-Jeong Lee ◽  
Minjung Kathy Chae

Abstract Background and Aims Therapeutic hypothermia or targeted temperature management (TTM) has been standard treatment for cardiac arrest survivors with suspected hypoxic ischemic brain injury for improvement in both survival and neurological outcomes. TTM is consisted of an induction phase of quickly lowering the temperature to target temperature (ranging from 32°C -36°C) as soon as possible, a hypothermia maintenance phase of keeping the body temperature at target temperature for at least 24 hours, a rewarming phase of slowly rewarming the temperature to normothermia, and a normothermia phase of keeping the body temperature at normothermia. During the dynamic changes in body temperature, cold-diuresis is a commonly described phenomenon. However, limited studies have characterized cold-induced diuresis during TTM. In this study, we sought to determine urine output changes during post cardiac arrest therapeutic hypothermia. Method This retrospective cohort study included adult patients who underwent TTM after out-of-hospital cardiac arrest and were admitted to the intensive care unit for post cardiac arrest care between January 2012 and August 2018. The exclusion criteria of this study were as follows: 1) deceased status before the completion of all phase of TTM; 2) previous end stage kidney disease patients, 3) undergoing renal replacement therapy due to AKI within 48 hours of TTM termination; 4) terminal cancer less than 6 months of life expectancy or previously cerebral performance category (CPC) 3 or more. The neurologic outcome was assessed using the CPC score after 1 month. Good neurologic outcome was defined as a CPC score of 1, 2 and poor neurologic outcome as a CPC score of 3 to 5. The post cardiac arrest protocol recommends a target temperature of 33°C unless the patient is hemodynamically unstable or has a bleeding tendency or severe infection. Rewarming rate was 0.15°C/hr or 0.25°C/hr. TTM was conducted with the use of temperature managing devices with a feedback loop system (Artic Sun Energy Transfer Pads, Medivance Corp., Louisville, CO, USA; Cool Guard Alsius Icy Heat Exchange Catheter, Alsius Corporation, Irvine, CA, USA). We calculated the hourly IV fluid input and urine output rates for each TTM phase. To compare the mean of urine volume between each TTM phase, we used repeated measure analysis of variance (ANOVA). Results 178 Patients included in the analysis. We observed a increase in urine output rates during hypothermia induction. This effect persisted even after adjustment for variable clinical confounders, including intravenous fluid input rate, mean arterial pressure (MAP), initial shockable rhythm, SOFA score, body mass index, and IV furosemide use. However, we did not detect any evidence of urine output increases or decreases during the hypothermia maintenance or rewarming phases. By repeating measures ANOVA and a linear mixed model, it was confirmed that there is a difference in urine output for each TTM phase. Even after the post hoc analysis was calibrated with several variables, only the hypotheria induction phase differed significantly from the urine output of the phase. Conclusion Although our results are some limitations, the findings support the potential presence of cold-induced dieresis, but not rewarm anti-diuresis during TTM. Our study may not fully capture the extent of renal impairment in post cardiac arrest undergoing TTM. However, our objective was to characterize urine output during TTM in post cardiac arrest patients. This has important implications for fluid management in patients undergoing TTM.


2019 ◽  
Vol 9 (4_suppl) ◽  
pp. S145-S152
Author(s):  
John Bro-Jeppesen ◽  
Anni Nørgaard Jeppesen ◽  
Simon Haugaard ◽  
Anne Troldborg ◽  
Christian Hassager ◽  
...  

Aim: Activation of the complement system is known to be a potent inducer of systemic inflammation, which is an important component of post-cardiac arrest syndrome. Mannan-binding-lectin associated protein of 19 kDa (MAp19) is suggested to be a regulatory component of the lectin pathway of complement activation. The aims of this study were to describe serial levels of MAp19 protein in comatose survivors of out-of-hospital cardiac arrest (OHCA), to evaluate the effect of two different regimes of targeted temperature management and to investigate the possible association between levels of MAp19 and mortality. Methods: In this post-hoc study, we analysed data from two large randomized controlled studies: ‘Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest’ (TTM) and ‘Targeted temperature management for 48 versus 24 h and neurological outcome after out-of-hospital cardiac arrest’ (TTH). We measured serial levels of MAp19 in 240 patients within 72 h after OHCA and in 82 healthy controls. The effect of targeted temperature management on MAp19 levels was analysed according to temperature allocation in main trials. Results: MAp19 levels were significantly lower in OHCA patients within 48 h after OHCA ( p-values <0.001) compared with healthy controls. A target temperature at 33°C compared with 36°C for 24 h was associated with significantly lower levels of MAp19 (–57 ng/mL (95% confidence interval (CI): –97 to −16 mg/mL), p=0.006). Target temperature at 33°C for 48 h compared with 24 h was not associated with a difference in MAp19 levels (–31 ng/mL (95% CI: –120 to 60 mg/mL), p=0.57). Low MAp19 levels at admission were associated with higher 30-day mortality (12% vs. 38%, plog-rank =0.0008), also in adjusted analysis (two-fold higher, hazard ratio =0.48 (95% CI: 0.31 to 0.75), p=0.001). Analysis of MAp19 levels at 24–72 h showed they were not associated with 30-day mortality. Conclusion: Survivors after OHCA have lower levels of MAp19 protein compared with healthy controls. A targeted temperature management at 33°C compared with 36°C was associated with significantly lower MAp19 levels, whereas target temperature at 33°C for 48 h compared with 24 h did not influence MAp19 protein levels. Low MAp19 levels at admission were independently associated with increased mortality.


2020 ◽  
Vol 9 (6) ◽  
pp. 1979
Author(s):  
Yoon Hee Choi ◽  
Dong Hoon Lee ◽  
Je Hyeok Oh ◽  
Jin Hong Min ◽  
Tae Chang Jang ◽  
...  

This study evaluated whether inter-hospital transfer (IHT) after the return of spontaneous circulation (ROSC) was associated with poor neurological outcomes after 6 months in post-cardiac-arrest patients treated with targeted temperature management (TTM). We used data from the Korean Hypothermia Network prospective registry from November 2015 to December 2018. These out-of-hospital cardiac arrest (OHCA) patients had either received post-cardiac arrest syndrome (PCAS) care at the same hospital or had been transferred from another hospital after ROSC. The primary endpoint was the neurological outcome 6 months after cardiac arrest. Subgroup analyses were performed to determine differences in the time from ROSC to TTM induction according to the electrocardiography results after ROSC. We enrolled 1326 patients. There were no significant differences in neurological outcomes between the direct visit and IHT groups. In patients without ST elevation, the mean time to TTM was significantly shorter in the direct visit group than in the IHT group. IHT after achieving ROSC was not associated with neurologic outcomes after 6 months in post-OHCA patients treated with TTM, even though TTM induction was delayed in transferred patients.


Sign in / Sign up

Export Citation Format

Share Document