Abstract 16722: Perinexal Width Modulates Sodium Channel Recruitment During Extracellular Stimulation

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Katrina Colucci Chang ◽  
Xiaobo Wu ◽  
Grace Blair ◽  
Alicia Lozano ◽  
Alexandra Hanlon ◽  
...  

Excitability in cardiomyocytes is dependent on the subthreshold current required to raise transmembrane potential to the activation threshold of voltage gated sodium channels and sodium channel recruitment to trigger an action potential. Cardiac sodium channels are densely expressed in the intercalated disc within the perinexal nanodomain, which is 2 orders of magnitude narrower than bulk extracellular interstitium. We hypothesized that perinexal narrowing reduces extracellular induced excitability because the perinexus functions as a voltage divider. Methods: Excitability with an extracellular stimulus was quantified in isolated Langendorff perfused male retired breeder guinea pig hearts by strength duration curves using the Lapicque method. Interventions included changing extracellular potassium (K+: 3, 4.5, and 10 mM), inhibiting sodium channels (90-uM Flecainide), and narrowing the perinexus by increasing extracellular calcium (Ca2+: 1.25 to 2.5 mM). Results: Consistent with previous studies, decreasing K+ from 4.56 to 3 mM depressed excitability with 2.5 mM Ca2+ but not 1.25 mM Ca2+, and conduction velocity (CV) decreased by 10.5 % with both 1.25 and 2.5 mM Ca2+. When K+ was raised from 4.56 to 10 mM, no change was seen in excitability with both Ca2+ concentrations. However, CV decreased by 16% with both Ca2+ concentrations. Flecainide depressed excitability only with 2.5 but not 1.25 mM Ca2+. Meanwhile CV decreased by 13% with 1.25 but CV did not change with 2.5 mM Ca2+. Finally, raising Ca2+ alone at baseline decreased excitability, without substantially changing conduction. Conclusions: Elevating extracellular calcium to narrow perinexi reduces excitability measured by extracellular stimulation consistent with a hypothesis that sodium channels in the intercalated disc are electrically isolated from the bulk interstitium. Furthermore, excitability and conduction do not correlate in response to similar K+ changes when Ca2+ also varies, suggesting cardiac excitability and propagation are independent mechanisms when the excitatory current occurs through regenerative propagation as occurs through gap junctions or arrives via an extracellular field as occurs with pacing and ephaptic coupling.

2013 ◽  
Vol 142 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Tamer M. Gamal El-Din ◽  
Gilbert Q. Martinez ◽  
Jian Payandeh ◽  
Todd Scheuer ◽  
William A. Catterall

Voltage-gated sodium channels undergo slow inactivation during repetitive depolarizations, which controls the frequency and duration of bursts of action potentials and prevents excitotoxic cell death. Although homotetrameric bacterial sodium channels lack the intracellular linker-connecting homologous domains III and IV that causes fast inactivation of eukaryotic sodium channels, they retain the molecular mechanism for slow inactivation. Here, we examine the functional properties and slow inactivation of the bacterial sodium channel NavAb expressed in insect cells under conditions used for structural studies. NavAb activates at very negative membrane potentials (V1/2 of approximately −98 mV), and it has both an early phase of slow inactivation that arises during single depolarizations and reverses rapidly, and a late use-dependent phase of slow inactivation that reverses very slowly. Mutation of Asn49 to Lys in the S2 segment in the extracellular negative cluster of the voltage sensor shifts the activation curve ∼75 mV to more positive potentials and abolishes the late phase of slow inactivation. The gating charge R3 interacts with Asn49 in the crystal structure of NavAb, and mutation of this residue to Cys causes a similar positive shift in the voltage dependence of activation and block of the late phase of slow inactivation as mutation N49K. Prolonged depolarizations that induce slow inactivation also cause hysteresis of gating charge movement, which results in a requirement for very negative membrane potentials to return gating charges to their resting state. Unexpectedly, the mutation N49K does not alter hysteresis of gating charge movement, even though it prevents the late phase of slow inactivation. Our results reveal an important molecular interaction between R3 in S4 and Asn49 in S2 that is crucial for voltage-dependent activation and for late slow inactivation of NavAb, and they introduce a NavAb mutant that enables detailed functional studies in parallel with structural analysis.


2018 ◽  
Vol 128 (6) ◽  
pp. 1151-1166 ◽  
Author(s):  
Marit Poffers ◽  
Nathalie Bühne ◽  
Christine Herzog ◽  
Anja Thorenz ◽  
Rongjun Chen ◽  
...  

Abstract Background Voltage-gated sodium channels generate action potentials in excitable cells, but they have also been attributed noncanonical roles in nonexcitable cells. We hypothesize that voltage-gated sodium channels play a functional role during extravasation of neutrophils. Methods Expression of voltage-gated sodium channels was analyzed by polymerase chain reaction. Distribution of Nav1.3 was determined by immunofluorescence and flow cytometry in mouse models of ischemic heart and kidney injury. Adhesion, transmigration, and chemotaxis of neutrophils to endothelial cells and collagen were investigated with voltage-gated sodium channel inhibitors and lidocaine in vitro. Sodium currents were examined with a whole cell patch clamp. Results Mouse and human neutrophils express multiple voltage-gated sodium channels. Only Nav1.3 was detected in neutrophils recruited to ischemic mouse heart (25 ± 7%, n = 14) and kidney (19 ± 2%, n = 6) in vivo. Endothelial adhesion of mouse neutrophils was reduced by tetrodotoxin (56 ± 9%, unselective Nav-inhibitor), ICA121431 (53 ± 10%), and Pterinotoxin-2 (55 ± 9%; preferential inhibitors of Nav1.3, n = 10). Tetrodotoxin (56 ± 19%), ICA121431 (62 ± 22%), and Pterinotoxin-2 (59 ± 22%) reduced transmigration of human neutrophils through endothelial cells, and also prevented chemotactic migration (n = 60, 3 × 20 cells). Lidocaine reduced neutrophil adhesion to 60 ± 9% (n = 10) and transmigration to 54 ± 8% (n = 9). The effect of lidocaine was not increased by ICA121431 or Pterinotoxin-2. Conclusions Nav1.3 is expressed in neutrophils in vivo; regulates attachment, transmigration, and chemotaxis in vitro; and may serve as a relevant target for antiinflammatory effects of lidocaine.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Dmytro O Kryshtal ◽  
Daniel J Blackwell ◽  
Christian L Egly ◽  
Abigail N Smith ◽  
Suzanne M Batiste ◽  
...  

Rationale: The class Ic antiarrhythmic drug flecainide prevents ventricular tachyarrhythmia in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease caused by hyperactive cardiac ryanodine receptor (RyR2) calcium (Ca) release. Although flecainide inhibits single RyR2 channels in vitro , reports have claimed that RyR2 inhibition by flecainide is not relevant for its mechanism of antiarrhythmic action and concluded that sodium channel block alone is responsible for flecainide’s efficacy in CPVT. Objective: To determine whether RyR2 block independently contributes to flecainide’s efficacy for suppressing spontaneous sarcoplasmic reticulum (SR) Ca release and for preventing ventricular tachycardia in vivo . Methods and Results: We synthesized N -methyl flecainide analogues (QX-FL and NM-FL) and showed that N -methylation reduces flecainide’s inhibitory potency on RyR2 channels but not on cardiac sodium channels. Antiarrhythmic efficacy was tested utilizing a calsequestrin knockout (Casq2-/-) CPVT mouse model. In membrane-permeabilized Casq2-/- cardiomyocytes — lacking intact sarcolemma and devoid of sodium channel contribution — flecainide, but not its analogues, suppressed RyR2-mediated Ca release at clinically relevant concentrations. In voltage-clamped, intact Casq2-/- cardiomyocytes pretreated with tetrodotoxin (TTX) to inhibit sodium channels and isolate the effect of flecainide on RyR2, flecainide significantly reduced the frequency of spontaneous SR Ca release, while QX-FL and NM-FL did not. In vivo , flecainide effectively suppressed catecholamine-induced ventricular tachyarrhythmias in Casq2-/- mice, whereas NM-FL did not, despite comparable sodium channel block. Conclusions: Flecainide remains an effective inhibitor of RyR2-mediated arrhythmogenic Ca release even when cardiac sodium channels are blocked. In mice with CPVT, sodium channel block alone was not enough to prevent arrhythmias. Hence, RyR2 inhibition by flecainide is critical for its mechanism of antiarrhythmic action.


Author(s):  
Dmytro O Kryshtal ◽  
Daniel Blackwell ◽  
Christian Egly ◽  
Abigail N Smith ◽  
Suzanne M Batiste ◽  
...  

Rationale: The class Ic antiarrhythmic drug flecainide prevents ventricular tachyarrhythmia in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease caused by hyperactive cardiac ryanodine receptor (RyR2) calcium (Ca) release. Although flecainide inhibits single RyR2 channels in vitro, reports have claimed that RyR2 inhibition by flecainide is not relevant for its mechanism of antiarrhythmic action and concluded that sodium channel block alone is responsible for flecainide's efficacy in CPVT. Objective: To determine whether RyR2 block independently contributes to flecainide's efficacy for suppressing spontaneous sarcoplasmic reticulum (SR) Ca release and for preventing ventricular tachycardia in vivo. Methods and Results: We synthesized N-methylated flecainide analogues (QX-FL and NM-FL) and showed that N-methylation reduces flecainide's inhibitory potency on RyR2 channels incorporated into artificial lipid bilayers. N-Methylation did not alter flecainide's inhibitory activity on human cardiac sodium channels expressed in HEK293T cells. Antiarrhythmic efficacy was tested utilizing a calsequestrin knockout (Casq2-/-) CPVT mouse model. In membrane-permeabilized Casq2-/- cardiomyocytes — lacking intact sarcolemma and devoid of sodium channel contribution — flecainide, but not its analogues, suppressed RyR2-mediated Ca release at clinically relevant concentrations. In voltage-clamped, intact Casq2-/- cardiomyocytes pretreated with tetrodotoxin (TTX) to inhibit sodium channels and isolate the effect of flecainide on RyR2, flecainide significantly reduced the frequency of spontaneous SR Ca release, while QX-FL and NM-FL did not. In vivo, flecainide effectively suppressed catecholamine-induced ventricular tachyarrhythmias in Casq2-/- mice, whereas NM-FL had no significant effect on arrhythmia burden, despite comparable sodium channel block. Conclusions: Flecainide remains an effective inhibitor of RyR2-mediated arrhythmogenic Ca release even when cardiac sodium channels are blocked. In mice with CPVT, sodium channel block alone did not prevent ventricular tachycardia. Hence, RyR2 channel inhibition likely constitutes the principal mechanism of antiarrhythmic action of flecainide in CPVT.


2016 ◽  
Vol 113 (7) ◽  
pp. 1823-1828 ◽  
Author(s):  
Carolina González ◽  
José Cánovas ◽  
Javiera Fresno ◽  
Eduardo Couve ◽  
Felipe A. Court ◽  
...  

The regulation of the axonal proteome is key to generate and maintain neural function. Fast and slow axoplasmic waves have been known for decades, but alternative mechanisms to control the abundance of axonal proteins based on local synthesis have also been identified. The presence of the endoplasmic reticulum has been documented in peripheral axons, but it is still unknown whether this localized organelle participates in the delivery of axonal membrane proteins. Voltage-gated sodium channels are responsible for action potentials and are mostly concentrated in the axon initial segment and nodes of Ranvier. Despite their fundamental role, little is known about the intracellular trafficking mechanisms that govern their availability in mature axons. Here we describe the secretory machinery in axons and its contribution to plasma membrane delivery of sodium channels. The distribution of axonal secretory components was evaluated in axons of the sciatic nerve and in spinal nerve axons after in vivo electroporation. Intracellular protein trafficking was pharmacologically blocked in vivo and in vitro. Axonal voltage-gated sodium channel mRNA and local trafficking were examined by RT-PCR and a retention-release methodology. We demonstrate that mature axons contain components of the endoplasmic reticulum and other biosynthetic organelles. Axonal organelles and sodium channel localization are sensitive to local blockade of the endoplasmic reticulum to Golgi transport. More importantly, secretory organelles are capable of delivering sodium channels to the plasma membrane in isolated axons, demonstrating an intrinsic capacity of the axonal biosynthetic route in regulating the axonal proteome in mammalian axons.


2014 ◽  
Vol 144 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Tamer M. Gamal El-Din ◽  
Todd Scheuer ◽  
William A. Catterall

Voltage-gated sodium channels mediate the initiation and propagation of action potentials in excitable cells. Transmembrane segment S4 of voltage-gated sodium channels resides in a gating pore where it senses the membrane potential and controls channel gating. Substitution of individual S4 arginine gating charges (R1–R3) with smaller amino acids allows ionic currents to flow through the mutant gating pore, and these gating pore currents are pathogenic in some skeletal muscle periodic paralysis syndromes. The voltage dependence of gating pore currents provides information about the transmembrane position of the gating charges as S4 moves in response to membrane potential. Here we studied gating pore current in mutants of the homotetrameric bacterial sodium channel NaChBac in which individual arginine gating charges were replaced by cysteine. Gating pore current was observed for each mutant channel, but with different voltage-dependent properties. Mutating the first (R1C) or second (R2C) arginine to cysteine resulted in gating pore current at hyperpolarized membrane potentials, where the channels are in resting states, but not at depolarized potentials, where the channels are activated. Conversely, the R3C gating pore is closed at hyperpolarized membrane potentials and opens with channel activation. Negative conditioning pulses revealed time-dependent deactivation of the R3C gating pore at the most hyperpolarized potentials. Our results show sequential voltage dependence of activation of gating pore current from R1 to R3 and support stepwise outward movement of the substituted cysteines through the narrow portion of the gating pore that is sealed by the arginine side chains in the wild-type channel. This pattern of voltage dependence of gating pore current is consistent with a sliding movement of the S4 helix through the gating pore. Through comparison with high-resolution models of the voltage sensor of bacterial sodium channels, these results shed light on the structural basis for pathogenic gating pore currents in periodic paralysis syndromes.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Jerome C Clatot ◽  
Malcolm Hoshi ◽  
Haiyan Liu ◽  
Xiaoping Wan ◽  
Krekwit Shinlapawittayatorn ◽  
...  

Introduction: Mutations in SCN5A, the gene encoding for the cardiac sodium channel, produce alterations of the cardiac action potential that lead to life-threatening arrhythmias such as Long QT Syndrome (LQT3) and Brugada Syndrome (BrS). The conventional wisdom that sodium channels exist in complexes containing a single alpha-subunit has been challenged by the existence of dominant-negative (DN) mutations in BrS and the presence of polymorphisms that can restore trafficking and gating deficiencies of mutant channels in LQT and BrS. In fact, we have previously demonstrated that SCN5A subunits can interact with each other. Here we hypothesized that the physical and biophysical interactions between SCN5A alpha-subunits involve the partner protein 14-3-3, known to form dimers. Methods: SCN5A DN-BrS mutants and LQT3 gating deficient mutants were expressed in HEK293 cells and in commercially available iPS-derived cardiomyocytes, iCells©, in presence or absence of 14-3-3 inhibition. Resulting currents were measured using patch-clamp. Results: In order to investigate if the DN-effect seen by some BrS mutants is due to interaction of the sodium channel with the protein 14-3-3 which in turn would be involved in the alpha-alpha interaction, we expressed two different BrS DN-mutants in HEK293 cells with and without difopein, a specific 14-3-3 inhibitor. The presence of difopein abolished the DN-effect of both mutants. The DN-effect was also abolished when we mutated the putative 14-3-3 binding site on SCN5A and expressed the DN-mutants either in HEK293 cells or in iCells©. Inhibition of 14-3-3 also impaired the biophysical coupling observed in presence of SCN5A gating deficient mutants that affect either activation or inactivation of not only the mutants but also of the wild-type channel. Conclusions: Our results suggest that binding of 14-3-3 to the cardiac sodium channel alpha-subunit is involved in the alpha-alpha interaction and biophysical coupling of the channel. This study not only shifts paradigms in regards to sodium channel assembly and structure, but also puts forward the idea that physical and biophysical uncoupling of cardiac sodium channels could be a new therapy target for cardiac arrhythmias caused by SCN5A mutations.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Rengasayee Veeraraghavan ◽  
Joyce T Lin ◽  
James P Keener ◽  
Steven Poelzing ◽  
Robert G Gourdie

Pore-forming (Nav1.5) and auxiliary (β1; SCN1b) subunits of cardiac sodium channels are enriched at the cardiomyocyte intercalated disk (ID). Mathematical models suggest that this may facilitate conduction via ephaptic mechanisms. We recently demonstrated Nav1.5 enrichment (gSTED superresolution microscopy) and close membrane apposition (<10 nm; electron microscopy) within the perinexus, a microdomain surrounding connexin43 (Cx43) gap junctions (GJ). These data identified the perinexus as a candidate structure for the cardiac ephapse. Further studies using gSTED and STORM superresolution microscopy revealed Nav1.5 and β1 enrichment within ID regions not containing dense clusters of Cx43 and N-Cadherin. Notably, both were identified within the perinexus: Overall, 22% of Nav1.5 & β1 were located within perinexal regions while only 2 and 5% respectively overlapped with Cx43 clusters. Importantly, acute interstitial edema (AIE) increased intermembrane distance at perinexal, but not at non-perinexal sites in adult guinea pig myocardium. Functionally, this correlated with decreased transverse conduction velocity (CV-T; 15.2±0.3 vs. 19.6±0.1cm/s) and increased anisotropic ratio (AR; 3.0±0.2 vs. 2.8±0.1) relative to control, in perfused guinea pig ventricles. Nav1.5 blockade (0.5 μM flecainide) by itself decreased CV (18%) without changing AR. However, Nav1.5 inhibition during AIE preferentially decreased CV-T (13.0±0.6cm/s), increased AR (3.3±0.2) and increased spontaneous arrhythmias (7/9 vs. 4/11) compared to AIE alone. Notably, only a computer model including ephaptic coupling and the ID localization of Nav1.5 could recapitulate these results. Next we investigated the role of β1 in ephaptic coupling: Electrical cell-substrate impedance spectroscopy of 1610 cells heterologously overexpressing β1 revealed 3-fold higher paracellular resistance relative to native 1610 cells. These data along with the known cell adhesion function of β1 in neural tissue suggest that β1-mediated adhesion may facilitate close membrane apposition within the perinexus. Taken together, our results identify β1-mediated adhesion as a novel determinant of anisotropic conduction and potential antiarrhythmic target.


Sign in / Sign up

Export Citation Format

Share Document