scholarly journals T Cell Costimulation Blockade Blunts Age-Related Heart Failure

2020 ◽  
Vol 127 (8) ◽  
pp. 1115-1117 ◽  
Author(s):  
Elisa Martini ◽  
Marco Cremonesi ◽  
Cristina Panico ◽  
Pierluigi Carullo ◽  
Cecilia Assunta Bonfiglio ◽  
...  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Marinos Kallikourdis ◽  
Elisa Martini ◽  
Pierluigi Carullo ◽  
Claudia Sardi ◽  
Giuliana Roselli ◽  
...  

2006 ◽  
Vol 5 (1) ◽  
pp. 128-129
Author(s):  
G PULIGNANO ◽  
A DILENARDA ◽  
F OLIVA ◽  
G GIGLI ◽  
S LOTTAROLI ◽  
...  

2007 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Stephen W. Chensue ◽  
Bo-Chin Chiu ◽  
Valerie R. Stolberg

2000 ◽  
Vol 28 (2) ◽  
pp. 250-254 ◽  
Author(s):  
R. Aspinall ◽  
D. Andrew

Age-related deterioration in immune function has been recognized in many species. In humans the clinical manifestation of such immune dysfunction is age-related increases in the susceptibility to certain infections and in the incidence of some autoimmune disease and certain cancers. Laboratory investigations reveal age-related changes in the peripheral T cell pool, in the predominant phenotype, cytokine production profiles, signalling function and in replicative ability following stimulus with antigen, mitogens or anti-CD3 antibody. These changes in the properties of peripheral T cells are thought to be causally linked to an age-associated involution in the thymus. Our analysis reveals that thymic involution is due to a change in the thymic microenvironment linked to a reduction in the level of available interleukin 7. Treatment with interleukin 7 leads to a reversal of thymic atrophy with increased thymopoiesis. This provides the potential to reverse the immune dysfunction seen in the peripheral T cell pool by replacing old cells with new output generated in the thymus. Problems to overcome in order for such an experimental therapy to be successful require careful analysis in order to provide an optimal strategy to ensure that new T cell emigrants from the thymus have a broad range of specificities and are able to enter the peripheral T cell pool.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
ES Eystein Skjolsvik ◽  
OL Oyvind Haugen Lie ◽  
MC Monica Chivulescu ◽  
MR Margareth Ribe ◽  
AIC Anna Isotta Castrini ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): This work was supported by the Norwegian Research Council [203489/030] onbehalf Department of Cardiology, Research group for genetic cardiac diseases and sudden cardiac death, Oslo University Hospital, Rikshospitalet, Oslo, Norwa Background Lamin A/C disease is an inheritable cardiomyopathy characterized by conduction abnormalities, ventricular arrhythmias and end stage heart failure with complete age-related penetrance. Purpose To assess left ventricular structural and functional progression in patients with lamin A/C cardiomyopathy. Methods We included and followed consecutive lamin A/C genotype positive patients with clinical examination and echocardiography at every visit. We evaluated progression of left- ventricular size and function by mixed model statistics. Results We included 101 consecutive lamin A/C genotype positive patients (age 44 [29-54] years, 39% probands, 51%female) with 576 echocardiographic exams during 4.9 (IQR 2.5-8.1) years of follow-up. LV ejection fraction (LVEF) declined from 50 ± 12% to 47 ± 13%, p < 0.001 (rate -0.5%/year). LV end diastolic volumes (LVEDV) remained stationary with no significant dilatation in the total population (136 ± 45ml to 138 ± 43ml, p = 0.60), (Figure). In the subgroup of patients >58 years, we observed a decline in LV volumes 148, SE 9 ml to 140, SE 9 ml p < 0.001 (rate -2.7 ml/year) towards end stage heart failure. Conclusions LVEF deteriorated, while LV size remained unchanged during 4.9 years of follow-up in patients with lamin A/C cardiomyopathy. In patients <58 years, we observed a reduction in LV volumes. These findings represent loss of LV function without the necessary compensatory dilation to preserve stroke volume indicating high risk of decompensated end stage heart failure in lamin A/C. Abstract Figure.


2020 ◽  
Vol 24 (10) ◽  
pp. 1140-1143 ◽  
Author(s):  
Catherine Takeda ◽  
D. Angioni ◽  
E. Setphan ◽  
T. Macaron ◽  
P. De Souto Barreto ◽  
...  

AbstractIn their everyday practice, geriatricians are confronted with the fact that older age and multimorbidity are associated to frailty. Indeed, if we take the example of a very old person with no diseases that progressively becomes frail with no other explanation, there is a natural temptation to link frailty to aging. On the other hand, when an old person with a medical history of diabetes, arthritis and congestive heart failure becomes frail there appears an obvious relationship between frailty and comorbidity. The unsolved question is: Considering that frailty is multifactorial and in the majority of cases comorbidity and aging are acting synergistically, can we disentangle the main contributor to the origin of frailty: disease or aging? We believe that it is important to be able to differentiate age-related frailty from frailty related to comorbidity. In fact, with the emergence of geroscience, the physiopathology, diagnosis, prognosis and treatment will probably have to be different in the future.


Aging Cell ◽  
2011 ◽  
Vol 10 (5) ◽  
pp. 769-779 ◽  
Author(s):  
Geert C. van Almen ◽  
Wouter Verhesen ◽  
Rick E. W. van Leeuwen ◽  
Mathijs van de Vrie ◽  
Casper Eurlings ◽  
...  
Keyword(s):  

2016 ◽  
Vol 113 (5) ◽  
pp. 1333-1338 ◽  
Author(s):  
Kylie M. Quinn ◽  
Sophie G. Zaloumis ◽  
Tania Cukalac ◽  
Wan-Ting Kan ◽  
Xavier Y. X. Sng ◽  
...  

In advanced age, decreased CD8+ cytotoxic T-lymphocyte (CTL) responses to novel pathogens and cancer is paralleled by a decline in the number and function of naïve CTL precursors (CTLp). Although the age-related fall in CD8+ T-cell numbers is well established, neither the underlying mechanisms nor the extent of variation for different epitope specificities have been defined. Furthermore, naïve CD8+ T cells expressing high levels of CD44 accumulate with age, but it is unknown whether this accumulation reflects their preferential survival or an age-dependent driver of CD8+ T-cell proliferation. Here, we track the number and phenotype of four influenza A virus (IAV)-specific CTLp populations in naïve C57BL/6 (B6) mice during aging, and compare T-cell receptor (TCR) clonal diversity for the CD44hi and CD44lo subsets of one such population. We show differential onset of decline for several IAV-specific CD8+ T-cell populations with advanced age that parallel age-associated changes in the B6 immunodominance hierarchy, suggestive of distinct impacts of aging on different epitope-specific populations. Despite finding no evidence of clonal expansions in an aged, epitope-specific TCR repertoire, nonrandom alterations in TCR usage were observed, along with elevated CD5 and CD8 coreceptor expression. Collectively, these data demonstrate that naïve CD8+ T cells expressing markers of heightened self-recognition are selectively retained, but not clonally expanded, during aging.


Sign in / Sign up

Export Citation Format

Share Document