scholarly journals Novel Associations of Multiple Genetic Loci With Plasma Levels of Factor VII, Factor VIII, and von Willebrand Factor

Circulation ◽  
2010 ◽  
Vol 121 (12) ◽  
pp. 1382-1392 ◽  
Author(s):  
Nicholas L. Smith ◽  
Ming-Huei Chen ◽  
Abbas Dehghan ◽  
David P. Strachan ◽  
Saonli Basu ◽  
...  
Circulation ◽  
2019 ◽  
Vol 139 (5) ◽  
pp. 620-635 ◽  
Author(s):  
Maria Sabater-Lleal ◽  
Jennifer E. Huffman ◽  
Paul S. de Vries ◽  
Jonathan Marten ◽  
Michael A. Mastrangelo ◽  
...  

Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 387-397 ◽  
Author(s):  
HR Gralnick ◽  
SB Williams ◽  
DK Morisato

The characteristics of the intact factor VIII/von Willebrand factor protein binding to human platelets was compared to 2-mercaptoethanol- treated factor VIII/von Willebrand factor protein and to fractions of plasma factor VIII/von Willebrand factor protein that elute after the void volume. These studies indicate that the factor VIII/von Willebrand factor protein larger size oligomers bind preferentially with high affinity to low capacity sites on human platelets. The intermediate and smaller size oligomers bind with intermediate or low affinity to sites with a much greater capacity. The results from binding analysis are also paralleled by the competitive inhibition of the intact factor VIII/von Willebrand factor protein by the various 2-mercaptoethanol- treated materials. These studies indicate that the two classes of binding sites seen in previous reports of factor VII/von Willebrand factor binding reflect heterogeneity in the oligomer size of the factor VIII/von Willebrand factor protein used in these assays. This study provides a model for understanding some of the normal structure- function relationships of the normal factor VIII/von Willebrand factor protein and the defect(s) in a variant form of von Willebrand's disease. In this form of the disease, decreased factor VIII/von Willebrand factor binding to platelets is reflected in decreased von Willebrand factor activity but coagulant and/or antigen levels are normal or only slightly decreased.


Blood ◽  
1981 ◽  
Vol 57 (6) ◽  
pp. 1140-1143 ◽  
Author(s):  
ZM Ruggeri ◽  
TS Zimmerman

We have analyzed the multimeric structure of factor VIII/von Willebrand factor in plasma by sodium dodecyl sulfate electrophoresis using gels of varying porosity and a discontinuous buffer system. Factor VIII/von Willebrand factor bands were identified by reaction with 125I-labeled affinity-purified antibody and subsequent autoradiography. In 1% agarose gels, normal plasma displayed a series of sharply defined oligomers. However, increasing the agarose concentration to 2.0% or utilizing mixtures of 0.8% agarose--1.75% acrylamide revealed two bands of lesser intensity interposed between the major bands. When the acrylamide concentration in the gels was increased to 2.5%, bands with a faster mobility than IgM and fibronectin were now evident. Type IIA von Willebrand's disease showed not only an absence of the larger multimers but also a relative increase in several of the newly identified bands as compared to type IIB, type I, and normal. These studies suggest that factor VII/von Willebrand factor in IIA von Willebrand's disease is structurally different from that in other forms of the disorder. They also indicate that the multimeric composition of factor VII/von Willebrand factor is more complex than can be explained by simple linear polymerization of a single protomer.


Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 387-397 ◽  
Author(s):  
HR Gralnick ◽  
SB Williams ◽  
DK Morisato

Abstract The characteristics of the intact factor VIII/von Willebrand factor protein binding to human platelets was compared to 2-mercaptoethanol- treated factor VIII/von Willebrand factor protein and to fractions of plasma factor VIII/von Willebrand factor protein that elute after the void volume. These studies indicate that the factor VIII/von Willebrand factor protein larger size oligomers bind preferentially with high affinity to low capacity sites on human platelets. The intermediate and smaller size oligomers bind with intermediate or low affinity to sites with a much greater capacity. The results from binding analysis are also paralleled by the competitive inhibition of the intact factor VIII/von Willebrand factor protein by the various 2-mercaptoethanol- treated materials. These studies indicate that the two classes of binding sites seen in previous reports of factor VII/von Willebrand factor binding reflect heterogeneity in the oligomer size of the factor VIII/von Willebrand factor protein used in these assays. This study provides a model for understanding some of the normal structure- function relationships of the normal factor VIII/von Willebrand factor protein and the defect(s) in a variant form of von Willebrand's disease. In this form of the disease, decreased factor VIII/von Willebrand factor binding to platelets is reflected in decreased von Willebrand factor activity but coagulant and/or antigen levels are normal or only slightly decreased.


Blood ◽  
1981 ◽  
Vol 57 (1) ◽  
pp. 25-31 ◽  
Author(s):  
PM Mannucci ◽  
ZM Ruggeri ◽  
N Ciavarella ◽  
MD Kazatchkine ◽  
JF Mowbray

Abstract Precipitating antibodies to factor VII/von Willebrand factor can develop in patients with severe homozygous-like von Willebrand's disease following multiple transfusions with blood derivatives. This study of 4 patients treated with cryoprecipitate for 13 different bleeding episodes demonstrates that the occurrence of such antibodies interferes with the management of the disease. The control of mucosal bleeding was poor, whereas more favorable responses were obtained in soft-tissue hemorrhages. These findings probably relate to failure of replacement therapy to shorten the prolonged bleeding time. Immediately after treatment, measurement of plasma factor VIII/von Willebrand factor-related antigen and ristocetin cofactor showed either no increase, or very low values, depending on the pre-infusion antibody titer. Levels of the factor VIII/von Willebrand factor-related procoagulant activity in the circulation were also lower than predicted and usually there was no evidence of the delayed and sustained rise typically observed in uncomplicated von Willebrand's disease. An anamnestic rise in antibody titer appeared 6–15 days after treatment and showed no obvious relationship with the amount of cryoprecipitate infused. Replacement therapy invariably caused severe side effects during, or immediately after, concentrate infusion. The results of in vitro studies support the view that these reactions were due to the appearance of circulating immune complexes.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4228-4228
Author(s):  
Silvia Albánez ◽  
Alison Michels ◽  
Kate Sponagle ◽  
David Lillicrap

Abstract Background: Aging is associated with a state of hypercoagulability, as the result of increased concentrations of plasma coagulation proteins. Plasma levels of Factor VIII (FVIII) and von Willebrand factor (VWF) increase with age in humans, but the potential contribution of increases in gene expression with age has not been studied. These two proteins circulate in a non-covalent complex and are cleared together from plasma, hence, a reduction in the expression of their clearance receptors is also a possible pathogenetic explanation. In contrast, plasma levels of ADAMTS13 have been shown to be reduced in later life in humans, but again the mechanism responsible for this age-related pathophysiology is currently unknown. In this study, we utilized a mouse model in which age-related changes in plasma levels of FVIII, VWF and ADAMTS13 were initially documented. Here, we evaluated age-related changes in the gene expression of VWF, FVIII, ADAMTS13 and the clearance receptors low-density lipoprotein receptor-related protein 1 (LRP1), scavenger receptor class A member 5 (SCARA5) and Stabilin-2 (Stab2). Methods: Liver, spleen and lung samples were collected from normal C57BL/6 mice at 9- (n=10), 55- (n=8) and 97-weeks of age (n=15). Also, liver and spleen samples were collected at 3-weeks of age (n=5). Total mRNA was isolated from the tissues and gene expression analysis performed through qRT-PCR by a two-step relative quantification against mouse GAPDH. Expression of murine Factor IX (f9) and Protein C (proc) genes were also measured as positive and negative controls, as the developmental expression of these genes has been extensively studied. The 9-weeks old mice were used as a reference, and expression levels in this group were set as 1. Results were expressed as the fold change median and 95% CI from the 9 week standard group. Data was log10 transformed and compared with a Mann-Whitney test. Additionally, plasma levels of murine VWF, FVIII and ADAMTS13 were measured through ELISA, chromogenic assays and ELISA-based activity assays, respectively, in samples obtained at the same time-points examined for gene expression. Results: Levels of VWF in plasma showed significant increases with age (p<0.0001), reaching a 2-fold increase by 97-weeks. Expression levels increased gradually with age in all three tissues evaluated, reaching a 1.4-fold increase in the lungs (p=0.008), 1.8-fold in the spleen (p=0.01) and 10.3-fold in the liver (p<0.0001) of 97-weeks old mice. When FVIII plasma levels were measured, a similar age-related increase was observed (p<0.0001). Expression levels increased significantly with age in the lungs by 2-fold (1.53-2.68, p=0.002), but no specific age-related changes were observed in liver and spleen. Plasma levels of mouse ADAMTS13 activity showed an opposite pattern to what has been reported for the human protein, with an age-related increase (p<0.0001). When ADAMTS13 gene expression was analyzed in the liver, higher levels were observed in the 3-week old group [1.32 (1.25-1.41), p=0.04], but no significant changes in expression occurred at later time points. Finally, gene expression analysis of LRP1, SCARA5 and Stab2 genes was performed in liver and spleen, the two main organs involved in VWF/FVIII clearance. Expression of these three receptor genes was significantly reduced in both tissues at 3-weeks (<0.04 fold for all estimates). Expression of LRP1 in the liver was an exception to this pattern, with a level that was similar to the 9-week old mice [1.44 (0.96-2.17), p=0.77]. Interestingly, no Stab2 expression was detected in the liver at any point. With aging, no significant changes occurred in SCARA5 and LRP1 gene expression that could be associated with higher plasma levels of VWF/FVIII. However, splenic Stab2 expression significantly decreased with age, reaching a 0.18-fold (0.13-0.25, p=0.02) reduction in the 97-weeks old spleen samples. The positive control gene used (f9) showed no increases in expression with age [1.11 (1.00-1.23), p=0.60], possibly due to strain differences with reported studies, while the negative control gene proc showed no changes [0.87 (0.82-0.93), p=0.28], as expected. Conclusions: Changes in gene expression with increasing age appear to be contributing to the increases in VWF and FVIII plasma levels. Our studies have shown age-related increases in expression of the VWF and FVIII genes and reduced expression of the clearance receptor Stabilin-2. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document