scholarly journals Microtubules Increase Diastolic Stiffness in Failing Human Cardiomyocytes and Myocardium

Circulation ◽  
2020 ◽  
Vol 141 (11) ◽  
pp. 902-915 ◽  
Author(s):  
Matthew A. Caporizzo ◽  
Christina Yingxian Chen ◽  
Ken Bedi ◽  
Kenneth B. Margulies ◽  
Benjamin L. Prosser

Background: Diastolic dysfunction is a prevalent and therapeutically intractable feature of heart failure (HF). Increasing ventricular compliance can improve diastolic performance, but the viscoelastic forces that resist diastolic filling and become elevated in human HF are poorly defined. Having recently identified posttranslationally detyrosinated microtubules as a source of viscoelasticity in cardiomyocytes, we sought to test whether microtubules contribute meaningful viscoelastic resistance to diastolic stretch in human myocardium. Methods: Experiments were conducted in isolated human cardiomyocytes and trabeculae. First, slow and rapid (diastolic) stretch was applied to intact cardiomyocytes from nonfailing and HF hearts and viscoelasticity was characterized after interventions targeting microtubules. Next, intact left ventricular trabeculae from HF patient hearts were incubated with colchicine or vehicle and subject to pre- and posttreatment mechanical testing, which consisted of a staircase protocol and rapid stretches from slack length to increasing strains. Results: Viscoelasticity was increased during diastolic stretch of HF cardiomyocytes compared with nonfailing counterparts. Reducing either microtubule density or detyrosination reduced myocyte stiffness, particularly at diastolic strain rates, indicating reduced viscous forces. In myocardial tissue, we found microtubule depolymerization reduced myocardial viscoelasticity, with an effect that decreased with increasing strain. Colchicine reduced viscoelasticity at strains below, but not above, 15%, with a 2-fold reduction in energy dissipation upon microtubule depolymerization. Post hoc subgroup analysis revealed that myocardium from patients with HF with reduced ejection fraction were more fibrotic and elastic than myocardium from patients with HF with preserved ejection fraction, which were relatively more viscous. Colchicine reduced viscoelasticity in both HF with preserved ejection fraction and HF with reduced ejection fraction myocardium. Conclusions: Failing cardiomyocytes exhibit elevated viscosity and reducing microtubule density or detyrosination lowers viscoelastic resistance to diastolic stretch in human myocytes and myocardium. In failing myocardium, microtubules elevate stiffness over the typical working range of strains and strain rates, but exhibited diminishing effects with increasing length, consistent with an increasing contribution of the extracellular matrix or myofilament proteins at larger excursions. These studies indicate that a stabilized microtubule network provides a viscous impediment to diastolic stretch, particularly in HF.

2021 ◽  
Author(s):  
Marie-Pierre Dubé ◽  
Olympe Chazara ◽  
Audrey Lemaçon ◽  
Géraldine Asselin ◽  
Sylvie Provost ◽  
...  

Aims. The Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity (CHARM) programme consisted of three parallel, randomised, double-blind clinical trials comparing candesartan with placebo in patients with heart failure (HF) categorised according to left ventricular ejection fraction and tolerability to an ACE inhibitor. We conducted a pharmacogenomic study of the CHARM studies to identify genetic predictors of heart failure progression and the efficacy and safety of treatment with candesartan. Methods. We performed genome-wide association studies (GWAS) with the composite endpoint of cardiovascular death or hospitalisation for heart failure in 2727 patients from CHARM-Overall and stratified by CHARM study according to preserved and reduced ejection fraction. The safety endpoints were hyperkalaemia, renal dysfunction, hypotension, and change in systolic blood pressure. We also conducted a genome-wide gene-level collapsing analysis from whole-exome sequencing data with the composite cardiovascular endpoint. Results. We found the genetic variant rs66886237 at 8p21.3 near the gene GFRA2 to be associated with the composite cardiovascular endpoint in 1029 HF patients with preserved ejection fraction from the CHARM-Preserved study [hazard ratio (HR): 1.91, 95% confidence interval (CI): 1.55-2.35; P=1.7x10-9], but not in patients with reduced ejection fraction. None of the GWAS for candesartan safety or efficacy passed the significance threshold. Conclusions. We have identified a candidate genetic variant potentially predictive of the progression of heart failure in patients with preserved ejection fraction. The findings require further replication and we cannot exclude the possibility that the results may be chance findings.


2021 ◽  
Vol 130 (4) ◽  
pp. 993-1000
Author(s):  
Katarina Steding-Ehrenborg ◽  
Erik Hedström ◽  
Marcus Carlsson ◽  
Elira Maksuti ◽  
Michael Broomé ◽  
...  

It is a previously unrecognized physiological mechanism of the heart that diastolic filling occurs with the help of hydraulics. In patients with heart failure with preserved ejection fraction, atrial dilatation may cause the net hydraulic force to work against cardiac filling, thus further augmenting diastolic dysfunction. In contrast, it may work favorably in patients with dilated ventricles, as in heart failure with reduced ejection fraction.


Open Heart ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. e001088 ◽  
Author(s):  
Francisco Londono-Hoyos ◽  
Patrick Segers ◽  
Zeba Hashmath ◽  
Garrett Oldland ◽  
Maheshwara Reddy Koppula ◽  
...  

ObjectiveNon-invasive assessment of left ventricular (LV) diastolic and systolic function is important to better understand physiological abnormalities in heart failure (HF). The spatiotemporal pattern of LV blood flow velocities during systole and diastole can be used to estimate intraventricular pressure differences (IVPDs). We aimed to demonstrate the feasibility of an MRI-based method to calculate systolic and diastolic IVPDs in subjects without heart failure (No-HF), and with HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF).MethodsWe studied 159 subjects without HF, 47 subjects with HFrEF and 32 subjects with HFpEF. Diastolic and systolic intraventricular flow was measured using two-dimensional in-plane phase-contrast MRI. The Euler equation was solved to compute IVPDs in diastole (mitral base to apex) and systole (apex to LV outflow tract).ResultsSubjects with HFpEF demonstrated a higher magnitude of the early diastolic reversal of IVPDs (−1.30 mm Hg) compared with the No-HF group (−0.78 mm Hg) and the HFrEF group (−0.75 mm Hg; analysis of variance p=0.01). These differences persisted after adjustment for clinical variables, Doppler-echocardiographic parameters of diastolic filling and measures of LV structure (No-HF=−0.72; HFrEF=−0.87; HFpEF=−1.52 mm Hg; p=0.006). No significant differences in systolic IVPDs were found in adjusted models. IVPD parameters demonstrated only weak correlations with standard Doppler-echocardiographic parameters.ConclusionsOur findings suggest distinct patterns of systolic and diastolic IVPDs in HFpEF and HFrEF, implying differences in the nature of diastolic dysfunction between the HF subtypes.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Masuda ◽  
T Kanda ◽  
M Asai ◽  
T Mano ◽  
T Yamada ◽  
...  

Abstract Background The presence of atrial fibrillation (AF) has been demonstrated to be associated with poor clinical outcomes in heart failure patients with reduced ejection fraction. Objective This study aimed to elucidate the impact of the presence of atrial fibrillation (AF) on the clinical characteristics, therapeutics, and outcomes in patients with heart failure and preserved ejection fraction (HFpEF). Methods PURSUIT-HFpEF is a multicenter prospective observational study including patients hospitalized for acute heart failure with left ventricular ejection fraction of >50%. Patients with acute coronary syndrome or severe valvular disease were excluded. Results Of 486 HFpEF patients (age, 80.8±9.0 years old; male, 47%) from 24 cardiovascular centers, 199 (41%) had AF on admission. Patients with AF had lower systolic blood pressures (142±27 vs. 155±35mmHg, p<0.0001) and higher heart rates (91±29 vs. 82±26bpm, p<0.0001) than those without. There was no difference in the usage of inotropes or mechanical ventilation between the 2 groups. A higher quality of life score (EQ5D, 0.72±0.27 vs. 0.63±0.30, p=0.002) was observed at discharge in patients with than without AF. In addition, AF patients tended to demonstrate lower in-hospital mortality rates (0.5% vs. 2.4%, p=0.09) and shorter hospital stays (20.3±12.1 vs. 22.6±18.4 days, p=0.09) than those without. During a mean follow up of 360±111 days, mortality (14.1% vs. 15.3) and heart failure re-hospitalization rates (13.1% vs. 13.9%) were comparable between the 2 groups. Conclusion In contrast to heart failure patients with reduced ejection fraction, AF on admission was not associated with poor long-term clinical outcomes among HFpEF patients. Several in-hospital outcomes were better in patients with AF than in those without. Acknowledgement/Funding None


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Soeren Jan Backhaus ◽  
Torben Lange ◽  
Elisabeth George ◽  
Kristian Hellenkamp ◽  
Roman Gertz ◽  
...  

Introduction: Invasive right heart catherization (RHC) using exercise-stress is the reference-standard for the diagnosis of heart failure with preserved ejection fraction (HFpEF) but carries the risk of the procedure. Real-time cardiovascular magnetic resonance (RT-CMR) imaging allows bicycle exercise CMR with unprecedented temporal and spatial resolution and may represent a novel non-invasive alternative. Methods: The HFpEF stress trial (NCT03260621) prospectively included 75 patients with echocardiographic signs of diastolic dysfunction and dyspnoea on exertion (E/E’>8, NYHA≥II) who underwent echocardiography, RHC and RT-CMR at rest and exercise-stress. HFpEF was defined according to pulmonary capillary wedge pressure (PCWP ≥15mmHg at rest or ≥25mmHg during exercise stress). RT-CMR functional assessments included time-volume-curves for total and early (1/3) diastolic left ventricular (LV) filling or left atrial (LA) emptying and LV/LA long axis strain (LAS). Results: HFpEF patients (n=34, mean PCWP rest 13mmHg, stress 27mmHg) had higher E/e’ (12.5 vs 9.15), NT-proBNP (255 vs 75ng/l) and LA volume index (43.8 vs 36.2ml/m 2 ) compared to non-HFpEF patients (n=34, rest 8mmHg, stress 18mmHg, p≤0.001 for all). There were no differences in RT-CMR LV total and early diastolic filling at rest and during exercise-stress (p≥0.164). In contrast, RT-CMR revealed impaired stress LA total (p=0.033) and early (p<0.001) diastolic emptying in HFpEF. LA LAS was the only impaired parameter at rest (p<0.001) and emerged as the best predictor for the presence of HFpEF during exercise-stress testing (AUC rest 0.82 vs stress 0.93, p=0.029). Conclusions: RT-CMR allows highly accurate identification of HFpEF during physiological exercise and may establish itself as a novel non-invasive diagnostic alternative for routine clinical use.


Heart ◽  
2022 ◽  
pp. heartjnl-2021-319605
Author(s):  
Andreas B Gevaert ◽  
Rachna Kataria ◽  
Faiez Zannad ◽  
Andrew J Sauer ◽  
Kevin Damman ◽  
...  

It is estimated that half of all patients with heart failure (HF) have HF with preserved ejection fraction (HFpEF). Yet this form of HF remains a diagnostic and therapeutic challenge. Differentiating HFpEF from other causes of dyspnoea may require advanced diagnostic methods, such as exercise echocardiography, invasive haemodynamics and investigations for ‘HFpEF mimickers’. While the classification of HF has relied heavily on cut-points in left ventricular ejection fraction (LVEF), recent evidence points towards a gradual shift in underlying mechanisms, phenotypes and response to therapies as LVEF increases. For example, among patients with HF, the proportion of hospitalisations and deaths due to cardiac causes decreases as LVEF increases. Medication classes that are efficacious in HF with reduced ejection fraction (HFrEF) have been less so at higher LVEF ranges, decreasing the risk of HF hospitalisation but not cardiovascular or all-cause death in HFpEF. These observations reflect the burden of non-cardiac comorbidities as LVEF increases and highlight the complex pathophysiological mechanisms, both cardiac and non-cardiac, underpinning HFpEF. Treatment with sodium-glucose cotransporter 2 inhibitors reduces the risk of composite cardiovascular events, driven by a reduction in HF hospitalisations; renin-angiotensin-aldosterone blockers and angiotensin-neprilysin inhibitors result in smaller reductions in HF hospitalisations among patients with HFpEF. Comprehensive management of HFpEF includes exercise as well as treatment of risk factors and comorbidities. Classification based on phenotypes may facilitate a more targeted approach to treatment than LVEF categorisation, which sets arbitrary cut-points when LVEF is a continuum. This narrative review summarises the pathophysiology, diagnosis, classification and management of patients with HFpEF.


2018 ◽  
Vol 15 (6) ◽  
pp. 494-503 ◽  
Author(s):  
Isabelle Johansson ◽  
Ulf Dahlström ◽  
Magnus Edner ◽  
Per Näsman ◽  
Lars Rydén ◽  
...  

Objective: To study the characteristics and prognostic implications of type 2 diabetes in different heart failure entities from a nationwide perspective. Methods: This observational study comprised 30,696 heart failure patients prospectively included in the Swedish Heart Failure Registry (SwedeHF) 2003–2011 from specialist care, with mortality information available until December 2014. Patients were categorized into three heart failure entities by their left ventricular ejection fraction (heart failure with preserved ejection fraction: ⩾50%, heart failure with mid-range ejection fraction: 40%–49% and heart failure with reduced ejection fraction: <40%). All-cause mortality stratified by type 2 diabetes and heart failure entity was studied by Cox regression. Results: Among the patients, 22% had heart failure with preserved ejection fraction, 21% had heart failure with mid-range ejection fraction and 57% had heart failure with reduced ejection fraction. The proportion of type 2 diabetes was similar, ≈25% in each heart failure entity. Patients with type 2 diabetes and heart failure with preserved ejection fraction were older, more often female and burdened with hypertension and renal impairment compared with heart failure with mid-range ejection fraction and heart failure with reduced ejection fraction patients among whom ischaemic heart disease was more common. Type 2 diabetes remained an independent mortality predictor across all heart failure entities after multivariable adjustment, somewhat stronger in heart failure with left ventricular ejection fraction below 50% (hazard ratio, 95% confidence interval; heart failure with preserved ejection fraction: 1.32 [1.22–1.43], heart failure with mid-range ejection fraction: 1.51 [1.39–1.65], heart failure with reduced ejection fraction: 1.46 [1.39–1.54]; p-value for interaction, p = 0.0049). Conclusion: Type 2 diabetes is an independent mortality predictor across all heart failure entities increasing mortality risk by 30%–50%. In type 2 diabetes, the heart failure with mid-range ejection fraction entity resembles heart failure with reduced ejection fraction in clinical characteristics, risk factor pattern and prognosis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qing Zhou ◽  
Peixin Li ◽  
Hengli Zhao ◽  
Xingbo Xu ◽  
Shaoping Li ◽  
...  

Heart failure with mid-range ejection fraction (HFmrEF) was first proposed by Lam and Solomon in 2014, and was listed as a new subtype of heart failure (HF) in 2016 European Society of Cardiology guidelines. Since then, HFmrEF has attracted an increasing amount of attention, and the number of related studies on this topic has grown rapidly. The diagnostic criteria on the basis of left ventricular ejection fraction (LVEF) are straightforward; however, LVEF is not a static parameter, and it changes dynamically during the course of HF. Thus, HFmrEF may not be an independent disease with a uniform pathophysiological process, but rather a collection of patients with different characteristics. HFmrEF is often associated with various cardiovascular and non-cardiovascular diseases. Thus, the pathophysiological mechanisms of HFmrEF are particularly complex, and its clinical phenotypes are diverse. The complexity and heterogeneity of HFmrEF may be one reason for inconsistent results between clinical studies. In fact, whether HFmrEF is a distinctive subtype or a transitional stage between HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF) is controversial. In this review, we discuss the clinical characteristics, treatment and prognosis of patients with HFmrEF, as well as the differences among HFmrEF, HFrEF, and HFpEF.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ying Lin ◽  
Shihui Fu ◽  
Yao Yao ◽  
Yulong Li ◽  
Yali Zhao ◽  
...  

AbstractHeart failure (HF) with preserved ejection fraction (HFpEF) is a leading cause of hospitalizations and mortality when diagnosed at the age of ≥ 65 years. HFpEF represents multifactorial and multisystemic syndrome and has different pathophysiology and phenotypes. Its diagnosis is difficult to be established based on left ventricular ejection fraction and may benefit from individually tailored approaches, underlying age-related changes and frequent comorbidities. Compared with the rapid development in the treatment of heart failure with reduced ejection fraction, HFpEF presents a great challenge and needs to be addressed considering the failure of HF drugs to improve its outcomes. Further extensive studies on the relationships between HFpEF, aging, and comorbidities in carefully phenotyped HFpEF subgroups may help understand the biology, diagnosis, and treatment of HFpEF. The current review summarized the diagnostic and therapeutic development of HFpEF based on the complex relationships between aging, comorbidities, and HFpEF.


Sign in / Sign up

Export Citation Format

Share Document