Abstract 421: The Subfornical Organ (SFO) Mediates CSF Na+ -induced Pressor Response via Activation of AT1 Receptors

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Missale A Tiruneh ◽  
Bing S Huang ◽  
Frans H Leenen

In salt-sensitive rats on high salt or rats with icv infusion of Na + , the increase in CSF [Na + ] leads to activation of the brain renin-angiotensin-aldosterone system and thereby to sympatho-excitation and hypertension. We tested whether the SFO and AT 1 receptors in the SFO play a crucial role in mediating the Na + -induced responses. In conscious Wistar rats, intra-SFO infusion of Na + -rich aCSF increased BP in a dose-related manner, whereas mannitol with the same osmolarity had no effects. Intra-SFO infusion of the AT 1 receptor blocker candesartan (cand.,10 μg) abolished pressor responses to intra-SFO infusion of Ang II (80 ng) or Na + -rich aCSF (0.45-0.6 M NaCl), and prevented 50% of the BP increase induced by icv infusion of Na + -rich aCSF (0.3 M NaCl, 4 μl/min for 6 min). In another set of Wistar rats, electrolytic lesion of the SFO prevented 50-65% of BP increases induced by icv infusion of Na + -rich aCSF or Ang II (5 ng/min). These data suggest that the SFO neurons are Na + -sensitive and via AT 1 receptors mediate a major part of the pressor response to CSF Na + . Data=means±SE (n=5-7). *p<.05 vs vehicle or sham lesion.

1996 ◽  
Vol 270 (1) ◽  
pp. H275-H280 ◽  
Author(s):  
B. S. Huang ◽  
F. H. Leenen

Intracerebroventricular administration of hypertonic saline, ouabain, brain ouabainlike activity (OLA), or angiotensin II (ANG II) causes sympathoexcitatory and pressor effects in rats. To clarify the possible interaction between increased brain sodium, brain OLA, and the brain renin-angiotensin system (RAS), increases in mean arterial pressure, heart rate (HR), and renal sympathetic nerve activity (RSNA) in response to intracerebroventricular 0.3 M NaCl, ouabain, and ANG II were recorded in conscious Wistar rats before and after intracerebroventricular pretreatment with the angiotensin-receptor (AT1) blocker losartan, antibody Fab fragments (Digibind), or, as control, gamma-globulins. These Fab fragments bind ouabain and brain OLA with high affinity. The arginine vasopressin (AVP) antagonist [d(CH2)5Tyr(Me)]AVP (30 micrograms/ kg) was injected intravenously before each intracerebroventricular injection. Intracerebroventricularly administered 0.3 M NaCl (3.8 mul/min for 10 min), ouabain (0.3 and 0.6 microgram), and ANG II (10 and 30 ng) caused similar pressor responses. However, the extent of HR and RSNA responses to ANG II was smaller than those to 0.3 M NaCl and ouabain. Intracerebroventricular losartan (10 and 20 micrograms) blocked responses to ANG II and 0.3 M NaCl and significantly attenuated the responses to ouabain (pressor response by 50-70%; RSNA and HR by 60-80%). In contrast, intracerebroventricular Fab fragments (66 micrograms) blocked only the responses to 0.3 M NaCl and ouabain and did not affect the responses to ANG II. These results suggest that an acute rise in brain sodium concentration increases brain OLA and the latter exerts its sympathoexcitatory and pressor effects at least partly via activation of the brain RAS.


1985 ◽  
Vol 249 (1) ◽  
pp. E49-E55 ◽  
Author(s):  
R. P. Naden ◽  
S. Coultrup ◽  
B. S. Arant ◽  
C. R. Rosenfeld

Reduced vascular responsiveness to infused angiotensin II (ANG II) has been observed during pregnancy. It has been proposed that infusions produce lower circulating concentrations of ANG II in pregnancy, due to an increase in the metabolic clearance rate of ANG II (MCRangii). We have evaluated the MCRangii and the arterial plasma concentrations of ANG II during constant infusions of 1.15 micrograms ANG II/min into chronically instrumented pregnant (n = 6) and nonpregnant (n = 9) sheep. Although the pressor responses were significantly less in the pregnant than in the nonpregnant sheep (17.5 +/- 0.5 vs. 34.9 +/- 3.2 mmHg, P less than 0.001), the values for MCRangii were not different: 56.2 +/- 6.3 ml X min-1 X kg-1 in nonpregnant and 55.9 +/- 4.3 ml X min-1 X kg-1 in pregnant sheep. The steady-state plasma ANG II concentrations during the infusions were slightly less in pregnant than in nonpregnant sheep (388 +/- 36 vs. 454 +/- 36 pg/ml); however, this difference would be responsible for only a 2-mmHg reduction in the pressor response. We conclude that the reduced pressor response to infused ANG II in pregnancy is not due to an increase in MCRangii nor to lower plasma ANG II concentrations.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Takuto Nakamura ◽  
Masanobu Yamazato ◽  
Yusuke Ohya

Objective: Aminopeptidase A (APA) degrades of various sympathomodulatory peptides such as angiotensin (Ang) II, cholecystkinin-8, neurokinin B and kallidin. APA activity is increased in the brain of hypertensive rats. A centrally acting APA inhibitor prodrug is currently under investigation in clinical trial for treatment of hypertension. In previous reports, a role of APA in the brain on cardiovascular regulation was researched focus on only renin-angiotensin system. We previously reported that intracerebroventricular(icv) administration of APA increased blood pressure and that this pressor response was partially blocked by angiotensin receptor blocker. In this study, we evaluated a role of APA on cardiovascular regulation focusing on peptides other than Ang II. Method: Eleven weeks old Wistar Kyoto rats were used. We icv administrated 800 ng/8 μL of APA after pretreatment of following drugs, i) 8μL of artificial cerebrospinal fluid (aCSF) as a control, ii) 80 nmol/8 μL of amastatin which is a non-specific aminopeptidase inhibitor, iii) 1 nmol/8 μL of HOE-140 which is a bradykinin receptor blocker to evaluate the involvement of degradation of kallidin to bradykinin by APA. Result: i) Icv administration of APA after pretreatment of aCSF increased blood pressure rapidly. Blood pressure reached a peak within 1 minute. The elevated blood pressure decreased gradually and reached baseline blood pressure in 10 minutes. A peak pressor response is 25.5±1.4 mmHg (n=5). ii) Icv pretreatment of amastatin or HOE-140 did not change the blood pressure. A peak pressor response induced by APA is 13.1±4.1 mmHg (n=6, p<0.05 vs aCSF). iii) Icv pretreatment of HOE-140 did not change the blood pressure. A peak pressor response induced by APA is 21.2±1.8 mmHg (n=4, p<0.05 vs aCSF). Conclusion: 1) Icv administration of APA increased blood pressure by APA enzymatic activity. 2) Cardiovascular regulation of APA in the brain is due to not only degradation of Ang II to Ang III but also degradation of kallidin to bradykinin. Clinical implication: We think inhibition of APA in the brain may be a unique therapeutic target which affects several cardiovascular peptides in the brain.


1990 ◽  
Vol 258 (5) ◽  
pp. R1147-R1156 ◽  
Author(s):  
K. C. Tomlinson ◽  
S. M. Gardiner ◽  
T. Bennett

Responses to intracerebroventricular (icv) angiotensin II (ANG II) were measured in Long-Evans rats treated with the diabetogenic agent, streptozotocin (STZ), or saline 28 days earlier. STZ-treated Long-Evans rats showed normal pressor responses to ANG II in the absence of drinking water, but bradycardic responses were impaired although there was no reduction in baroreflex sensitivity. When allowed to drink, saline-treated, but not STZ-treated, rats showed an enhanced pressor response to icv ANG II and a tachycardia. Peripheral V1-receptor antagonism attenuated the pressor response to icv ANG II, leaving a residual response that was greater in saline-treated than in STZ-treated rats. STZ-treated rats had attenuated pressor and heart rate responses to icv angiotensin I (ANG I). Although some cardiovascular responses to icv ANG I and ANG II were reduced in STZ-treated rats, these animals showed enhanced sensitivity to the dipsogenic effects of the peptides. Vasopressin-deficient Brattleboro rats showed little pressor response to icv ANG II unless drinking was allowed, in which case the pressor response was less in STZ-treated than in saline-treated Brattleboro rats, although there was no difference in drinking response.


1980 ◽  
Vol 59 (s6) ◽  
pp. 267s-269s ◽  
Author(s):  
Julianna E. Szilagyi ◽  
C. M. Ferrario

1. Intra-vertebral artery-administered angiotensin II acts at the area postrema to facilitate central sympathetic vasomotor activity. Recent evidence suggests a possible role of the opiate system in the mechanism of action of angiotensin II at the level of the brain stem. 2. In these experiments, we show that the morphine antagonist naloxone reduces significantly the magnitude of the pressor response to vertebral artery-infused angiotensin II. 3. Morphine, in contrast, doubled the peak of the vertebral response to identical doses of the peptide. Neither naloxone nor morphine affected the pressor responses to intravenously administered angiotensin II. 4. The data suggest that the endogenous opiate system in the medulla modulates the cardiovascular effects of angiotensin II at the level of the area postrema.


1988 ◽  
Vol 255 (6) ◽  
pp. R882-R887 ◽  
Author(s):  
M. B. Gutman ◽  
D. L. Jones ◽  
J. Ciriello

Experiments were done to investigate the contribution of cells of the paraventricular nucleus of the hypothalamus (PVH) to the drinking and pressor responses elicited by microinjection of angiotensin II (ANG II) into the subfornical organ (SFO) in the awake unrestrained rat. Microinjection of ANG II (5 eta g in 0.2 microliter) elicited drinking (7.1 +/- 0.7 ml in 15 min, n = 18) and pressor (19 +/- 1 mmHg, n = 17) responses. Bilateral lesions of the PVH by the administration of kainic acid (KA; 0.2 microgram in 0.2 microliter of phosphate buffer) resulted in the abolition of the drinking response (before, 7.8 +/- 1.8 ml in 15 min; after, 0 ml in 15 min, n = 6) and significant (P less than 0.05) attenuation of the pressor response (before, 15 +/- 1 mmHg; after, 5 +/- 2 mmHg, n = 5). Administration of 0.2 microliter of the phosphate buffer vehicle bilaterally into the PVH and KA into regions adjacent to the PVH had no significant effect on the drinking or pressor responses. KA injections into the PVH resulted in the loss of 70-80% of parvocellular cells in the posterodorsal component of the PVH compared with animals with KA injections into adjacent non-PVH tissue (n = 7) or vehicle injection into the PVH (n = 5). These results suggest that parvocellular cells of the PVH are an important component of the neural circuitry that mediates the drinking and pressor response to ANG II acting at the SFO.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Takuto Nakamura ◽  
Masanobu Yamazato ◽  
Akio Ishida ◽  
Yusuke Ohya

Aminopeptidase A (APA) cleaves angiotensin (Ang) II, kallidin, and other related peptides. In the brain, it activates the renin angiotensin system and causes hypertension. Limited data are available on the dipsogenic effect of APA and pressor effect of degraded peptides of APA such as bradykinin. Wistar-Kyoto rats received intracerebroventricular (icv) APA in a conscious, unrestrained state after pretreatment with (i) vehicle, (ii) 80 μg of telmisartan, an Ang II type-1 (AT1) receptor blocker, (iii) 800 nmol of amastatin, an aminopeptidase inhibitor, and (iv) 1 nmol of HOE-140, a bradykinin B2 receptor blocker. Icv administration of 400 and 800 ng of APA increased blood pressure by 12.6 ± 3.0 and 19.0 ± 3.1 mmHg, respectively. APA did not evoke drinking behavior. Pressor response to APA was attenuated on pretreatment with telmisartan (vehicle: 22.1 ± 2.2 mmHg versus telmisartan: 10.4 ± 3.2 mmHg). Pressor response to APA was also attenuated with amastatin and HOE-140 (vehicle: 26.5 ± 1.1 mmHg, amastatin: 14.4 ± 4.2 mmHg, HOE-140: 16.4 ± 2.2 mmHg). In conclusion, APA increase in the brain evokes a pressor response via enzymatic activity without dipsogenic effect. AT1 receptors and B2 receptors in the brain may contribute to the APA-induced pressor response.


1995 ◽  
Vol 268 (2) ◽  
pp. L302-L308 ◽  
Author(s):  
B. D. Nossaman ◽  
C. J. Feng ◽  
A. D. Kaye ◽  
P. J. Kadowitz

Pulmonary vasoconstrictor responses to angiotensin (ANG) IV, the 3-8 amino acid fragment of ANG II, were compared with responses to ANG I, ANG II, and ANG III and to other vasoactive peptides in the isolated blood perfused rat lung. In terms of relative activity, ANG IV was similar in potency to bradykinin and serotonin but was approximately 100-fold less potent than ANG I, ANG II, and ANG III. PD-123319, an AT2-receptor antagonist, enhanced pressor responses to the four angiotensin peptides and to bradykinin but did not significantly change the pressor response to serotonin or to ventilatory hypoxia. DuP-753, an AT1-receptor antagonist, significantly decreased pressor responses to the four angiotensin peptides and enhanced the pressor responses to bradykinin but not to serotonin. Captopril and enalaprilat increased the pressor response to ANG IV. Meclofenamate and N omega-nitro-L-arginine methyl ester shifted the dose-response curve for ANG IV to the left in a manner similar to that observed with ANG II and ANG III. These data show that ANG IV has significant vasoconstrictor activity and suggest that responses are mediated by the activation of AT1 receptors and that vasopressor responses of the angiotensin peptides may be modulated by activation of AT2 receptors. These results also suggest that responses to ANG IV are modulated by the release of vasodilator prostaglandins and nitric oxide and that AT2 receptors have little, if any, role in mediating or modulating the pressor response to ventilatory hypoxia.


1994 ◽  
Vol 142 (1) ◽  
pp. 19-28 ◽  
Author(s):  
D G Butler ◽  
D A Butt ◽  
D Puskas ◽  
G Y Oudit

Abstract Angiotensin II (ANG II)-mediated catecholamine release and its possible contribution to the pressor response was assessed in baroreceptor-denervated rats. Neonatal male Sprague-Dawley rats were injected with the sympatholytic drug, guanethidine monosulphate (50 mg/kg s.c., 6 days/week) for 40 days. Plasma catecholamine concentrations were measured using a 3H-radioenzymatic assay as follows: (a) before and 30 s after the injection of saline or ANG II (79·3 pmol/kg i.v.), at the peak of the pressor response, then 50 s and 80 s thereafter, in guanethidine-treated (GUAN) and saline-injected (SHAM) rats, and (b) before and after adrenalectomy (ADX), following the same time-sequence for ANG II as in (a). Peak pressor responses to graded doses of ANG II (6·6, 26·4, 53·0 and 79·3 pmol/kg i.v.) were measured in GUAN+ADX and ADX rats. Destruction of peripheral sympathetic nerves was confirmed by measurements of plasma noradrenaline (NA), adrenaline (AD) and dopamine (DA) concentrations and by changes in pressor responses and heart rates following i.v. doses of tyramine. ANG II induced significantly (P<0·05) greater pressor responses in GUAN+ADX rats than in ADX rats, especially after the 53·0 and 79·3 pmol/kg doses. Plasma AD concentrations increased within seconds after the pressor response to ANG II in both GUAN and SHAM rats but there was no change in plasma NA or DA concentrations (P<0·05). ANG-II-mediated AD release from the adrenal medulla may contribute to the overall pressor action of the peptide. The vasculature became more sensitive to ANG II at a time when NA and DA depletion occurred following sympathectomy and/or adrenalectomy. This heightened sensitivity to ANG II was not due to a decrease in circulating ANG II in sympathectomized rats because even though plasma renin activity fell from 6·54 ±0·52 to 3·77 ±0·26 ng ANG I/ml per h it remained within the normal range. Journal of Endocrinology (1994) 142, 19–28


Sign in / Sign up

Export Citation Format

Share Document