Abstract 034: Transient Receptor Potential Vanilloid-1 (TRPV1) Channels Mediate the Sympathoexcitatory and Pressor Responses to Central NaCl Stimulation

Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Sean D Stocker ◽  
Sarah S Simmonds ◽  
Kirsteen N Browning

Accumulating evidence indicates a high salt diet increases cerebrospinal fluid sodium concentration to elevate sympathetic nerve activity (SNA) and arterial blood pressure (ABP) in salt-sensitive hypertension. Recent evidence suggests TRPV1 channels underlie the ability of the brain to sense changes in osmotic pressure. The present study investigated whether the sympathoexcitatory response to intracerebroventricular (ICV) infusion of hypertonic NaCl was mediated by central TRPV1 channels. In Inactin-anesthetized Sprague-Dawley rats, ICV infusion of 1M NaCl (n=8) significantly increased lumbar SNA (140±12%), heart rate (20±7bpm), and mean ABP (9±1mmHg). ICV pretreatment with the broad-spectrum TRPV channel blocker ruthenium red (5mM, 2uL, n=8) eliminated the sympathoexcitatory response to ICV 1M NaCl: lumbar SNA (106±5%), heart rate (-6±7bpm), and mean ABP (1±2mmHg). Similarly, ICV pretreatment with the selective TRPV1 channel antagonist SB366791 (3mM, 2uL, n=8) prevented any change in lumbar SNA (106±3%), heart rate (4±6), and mean ABP (1±1mmHg). ICV injection of ruthenium red or SB366791 alone did not alter any variable. Surprisingly, ICV infusion of 1M NaCl (1μL) produced similar pressor responses in wild-type versus TRPV1-/- mice (12±2 vs 11±2 mmHg, n>4). Pretreatment with SB366791 attenuated the pressor response in wild-type but not TRPV1-/- mice. In vitro patch clamp recordings of neurons in the ventral lamina terminalis reveal that increases in bath osmolality produced dose-dependent membrane depolarization (5 mOsm: 5.0±0.63 mV, 10 mOsm: 6.1±1.24 mV, 15 mOsm: 12.4±2.1; n=5, P<0.05) and increase discharge frequency (5 mOsm: 208±32%, 10 mOsm: 246±55%, 15 mOsm: 274±101%, 20 mOsm: 496±53%; n=5, P<0.05). These responses were attenuated by bath application of the broad spectrum TRPV blocker ruthenium red. Collectively, these observations suggest that central TRPV channels mediate changes in neuronal excitability and cardiovascular responses to central osmotic stimulation.

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Leon J DeLalio ◽  
Sean D Stocker

Elevated renal afferent nerve activity (ARNA) or dysfunctional renal reflexes contributes to hypertension and chronic kidney disease. The transient receptor potential vanilloid type-1 (TRPV1) channel is expressed in renal sensory nerves, and intrarenal administration of the TRPV1 agonist capsaicin increases ARNA. Nonselective denervation of renal sensory nerves using high-concentration capsaicin reduces arterial blood pressure (ABP) in experimental models of hypertension. However, the role of TRPV1 channels in ARNA responses to chemo- and mechano-sensitive stimuli has not been directly tested. To test this hypothesis, we generated a novel TRPV1 rat knockout model (TRPV1 -/- ) using CRISPR/CAS9 to delete exon 3 . ARNA multifiber recordings were performed in male and female TRPV1 -/- and wild-type littermates (250-400g) after decerebration or Inactin anesthesia (data combined). Wild-type and TRPV1 -/- rats had no significant differences in baseline mean ABP (126±4 mmHg vs 138±5 mmHg, respectively; n=8-10) or heart rate (451±25 bpm vs 432±24 bpm, respectively; n=8-10). Baseline ARNA was not different between wild-type and TRPV1 -/- rats (16±3 Hz vs 28±6 Hz, respectively; n=8-10). Intrarenal artery infusion of the TRPV1 agonist capsaicin (0.1-10μM, 50μL per 15s) significantly increased ipsilateral ARNA in wild-type but not TRPV1 -/- rats (Δ discharge with 10μM: 65±3 Hz vs 6±1 Hz, respectively; n=5-7). As a second chemosensitive stimulus, intrarenal artery infusion of bradykinin (0.1-10μM, 50μL per 15s) produced similar increases in ipsilateral ARNA between wild-type and TRPV1 -/- rats (Δ discharge with 10μM: 52±6 Hz vs 73±18 Hz, respectively; n=5-6). Finally, elevated renal pelvic pressures (0-20mmHg; 30s) significantly increased ipsilateral ARNA in both wild-type and TRPV1 -/- rats; however, the ARNA response was significantly greater in TRPV1 -/- versus wild-type rats (Δ discharge with 20mmHg: 47±14 Hz versus 18±6 Hz, respectively; n=5-8). In conclusion, mechanosensitive and chemosensitive ARNA responses remain intact in TRPV1 -/- rats. The mechanisms responsible for renal sensory nerve activation remain unidentified and the impact of TRPV1 deletion in rat models of hypertension and kidney disease remains to be tested.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Sean D Stocker ◽  
Leon J DeLalio

Renal denervation lowers arterial blood pressure (ABP) in both clinical populations and multiple experimental models of hypertension. This therapeutic effect is partly attributed to the removal of overactive renal sensory nerves that increase sympathetic efferent activity and ABP. Renal sensory nerves highly express TRPV1 channels, and administration of the TRPV1 agonist capsaicin increases renal sensory nerve activity. However, the extent by which TRPV1 channels directly contribute to renal nerve dependent models of hypertension has not been tested. To test this hypothesis, we generated a novel TRPV1 -/- rat using CRISPR/Cas9 and deletion of exon 3. Male and female TRPV1 -/- and wild-type littermates (8-12 weeks) were instrumented with telemetry. At 2 weeks later, renovascular hypertension via renal stenosis was produced by placement of a PTFE cuff (0.16 x 0.22 inches, 1mm long) around the right renal artery. Male TRPV1 -/- and wild-type rats had no differences in baseline mean ABP (99±2 vs 98±3 mmHg, respectively; n=7-9) or heart rate (390±7 vs 400±8 bpm, respectively). Renal stenosis significantly increased mean ABP in both groups; however, mean ABP was significantly lower at Day 28 in male TRPV1 -/- versus wild-type rats (125±8 vs 155±2 mmHg, respectively: P<0.01). Ganglionic blockade with chlorisondamine (2.5mg/kg, sc) at Day 28 produced a smaller fall in mean ABP of male TRPV1 -/- versus wild-type rats (-53±4 vs -86±3 mmHg, respectively; P<0.001). On the other hand, female TRPV1 -/- and wild-type rats had no differences in baseline mean ABP (102±2 vs 104±1 mmHg, respectively; n=6-9) or heart rate (419±8 vs 410±7 bpm, respectively). Renal stenosis significantly increased mean ABP in both groups; however, there were no differences at Day 28 between female TRPV1 -/- versus wild-type rats (117±8 vs 122±6 mmHg, respectively). Moreover, the increase in mean ABP was smaller in females versus males. The ganglionic blocker chlorisondamine produced similar depressor responses in female TRPV1 -/- versus wild-type rats (-64±7 vs -65±7 mmHg, respectively). These findings illustrate a sex difference in renovascular hypertension in rats, but importantly indicate that TRPV1 channels contribute to the established phase of renovascular hypertension in male rats.


2009 ◽  
Vol 296 (3) ◽  
pp. L453-L461 ◽  
Author(s):  
Qihai Gu ◽  
Michelle E. Lim ◽  
Gerald J. Gleich ◽  
Lu-Yuan Lee

We have reported recently that eosinophil-derived basic proteins directly enhance the capsaicin- and electrical stimulation-evoked whole cell responses in rat pulmonary sensory neurons ( 19 ). Our present study further elucidates the mechanisms underlying the sensitization of pulmonary afferent nerves induced by these cationic proteins. Our results show that pretreatment with eosinophil major basic protein (MBP; 2 μM, 60 s) significantly enhanced the excitability of isolated rat vagal pulmonary chemosensitive neurons to acid and ATP in the current-clamp mode, but this potentiating effect was absent in the voltage-clamp recordings. The hyperexcitability induced by MBP was not prevented by the blockade of either transient receptor potential vanilloid type-1 receptor (TRPV1) selectively (inhibitor: AMG 9810; 1 μM, 2 min) or all TRPV1–4 channels (inhibitor: ruthenium red; 5 μM, 2 min). In addition, MBP also markedly potentiated the excitability of mouse pulmonary chemosensitive neurons, and no detectable difference was found between those isolated from wild-type and TRPV1 knockout mice. Furthermore, MBP pretreatment affected the decay time and recovery phase of the action potentials evoked by current injections and significantly inhibited both the sustained delayed-rectifier voltage-gated K+ current ( IKdr) and the A-type, fast-inactivating K+ current ( IKa) in these sensory neurons. In conclusion, our results indicate that the inhibition of IKdr and IKa should, at least in part, account for the hyperexcitability of pulmonary chemosensitive neurons induced by eosinophil-derived cationic proteins, whereas an interaction with TRPV1 channels does not seem to be required for the sensitizing effect of these proteins.


2008 ◽  
Vol 294 (4) ◽  
pp. R1285-R1293 ◽  
Author(s):  
A. Caitlynn Taylor ◽  
John J. McCarthy ◽  
Sean D. Stocker

Neurons of the organum vasculosum of the lamina terminalis (OVLT) are necessary for thirst and vasopressin secretion during hypersmolality in rodents. Recent evidence suggests the osmosensitivity of these neurons is mediated by a gene product encoding the transient receptor potential vanilloid-1 (TRPV1) channel. The purpose of the present study was to determine whether mice lacking the TRPV1 channel had blunted thirst responses and central Fos activation to acute and chronic hyperosmotic stimuli. Surprisingly, TRPV1−/− vs. wild-type mice ingested similar amounts of water after injection (0.5 ml sc) of 0.5 M NaCl and 1.0 M NaCl. Chronic increases in plasma osmolality produced by overnight water deprivation or sole access to a 2% NaCl solution for 48 h produced similar increases in water intake between wild-type and TRPV1−/− mice. There were no differences in cumulative water intakes in response to hypovolemia or isoproterenol. In addition, the number of Fos-positive cells along the lamina terminalis, including the OVLT, as well as the supraoptic nucleus and hypothalamic paraventricular nucleus, was similar between wild-type and TRPV1−/− mice after both acute and chronic osmotic stimulation. These findings indicate that TRPV1 channels are not necessary for osmotically driven thirst or central Fos activation, and thereby suggest that TRPV1 channels are not the primary ion channels that permit the brain to detect changes in plasma sodium concentration or osmolality.


2021 ◽  
Vol 22 (7) ◽  
pp. 3360
Author(s):  
Mee-Ra Rhyu ◽  
Yiseul Kim ◽  
Vijay Lyall

In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.


2008 ◽  
Vol 295 (4) ◽  
pp. F1230-F1238 ◽  
Author(s):  
Soo Mi Kim ◽  
Christoph Eisner ◽  
Robert Faulhaber-Walter ◽  
Diane Mizel ◽  
Susan M. Wall ◽  
...  

NKCC1 is a widely expressed isoform of the Na-2Cl-K cotransporter that mediates several direct and indirect vascular effects and regulates expression and release of renin. In this study, we used NKCC1-deficient (NKCC1−/−) and wild-type (WT) mice to assess day/night differences of blood pressure (BP), locomotor activity, and renin release and to study the effects of high (8%) or low (0.03%) dietary NaCl intake on BP, activity, and the renin/aldosterone system. On a standard diet, 24-h mean arterial blood pressure (MAP) and heart rate determined by radiotelemetry, and their day/night differences, were not different in NKCC1−/− and WT mice. Spontaneous and wheel-running activities in the active night phase were lower in NKCC1−/− than WT mice. In NKCC1−/− mice on a high-NaCl diet, MAP increased by 10 mmHg in the night without changes in heart rate. In contrast, there was no salt-dependent blood pressure change in WT mice. MAP reductions by hydralazine (1 mg/kg) or isoproterenol (10 μg/mouse) were significantly greater in NKCC1−/− than WT mice. Plasma renin (PRC; ng ANG I·ml−1·h−1) and aldosterone (aldo; pg/ml) concentrations were higher in NKCC1−/− than WT mice (PRC: 3,745 ± 377 vs. 1,245 ± 364; aldo: 763 ± 136 vs. 327 ± 98). Hyperreninism and hyperaldosteronism were found in NKCC1−/− mice during both day and night. High Na suppressed PRC and aldosterone in both NKCC1−/− and WT mice, whereas a low-Na diet increased PRC and aldosterone in WT but not NKCC1−/− mice. We conclude that 24-h MAP and MAP circadian rhythms do not differ between NKCC1−/− and WT mice on a standard diet, probably reflecting a balance between anti- and prohypertensive factors, but that blood pressure of NKCC1−/− mice is more sensitive to increases and decreases of Na intake.


2014 ◽  
Vol 306 (4) ◽  
pp. H574-H584 ◽  
Author(s):  
Jack Rubinstein ◽  
Valerie M. Lasko ◽  
Sheryl E. Koch ◽  
Vivek P. Singh ◽  
Vinicius Carreira ◽  
...  

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


2013 ◽  
Vol 288 (49) ◽  
pp. 35003-35013 ◽  
Author(s):  
Viktor Lukacs ◽  
Jan-Michael Rives ◽  
Xiaohui Sun ◽  
Eleonora Zakharian ◽  
Tibor Rohacs

2013 ◽  
Vol 109 (7) ◽  
pp. 1704-1712 ◽  
Author(s):  
Michelino Puopolo ◽  
Alexander M. Binshtok ◽  
Gui-Lan Yao ◽  
Seog Bae Oh ◽  
Clifford J. Woolf ◽  
...  

QX-314 ( N-ethyl-lidocaine) is a cationic lidocaine derivative that blocks voltage-dependent sodium channels when applied internally to axons or neuronal cell bodies. Coapplication of external QX-314 with the transient receptor potential vanilloid 1 protein (TRPV1) agonist capsaicin produces long-lasting sodium channel inhibition in TRPV1-expressing neurons, suggestive of QX-314 entry into the neurons. We asked whether QX-314 entry occurs directly through TRPV1 channels or through a different pathway (e.g., pannexin channels) activated downstream of TRPV1 and whether QX-314 entry requires the phenomenon of “pore dilation” previously reported for TRPV1. With external solutions containing 10 or 20 mM QX-314 as the only cation, inward currents were activated by stimulation of both heterologously expressed and native TRPV1 channels in rat dorsal root ganglion neurons. QX-314-mediated inward current did not require pore dilation, as it activated within several seconds and in parallel with Cs-mediated outward current, with a reversal potential consistent with PQX-314/ PCs = 0.12. QX-314-mediated current was no different when TRPV1 channels were expressed in C6 glioma cells, which lack expression of pannexin channels. Rapid addition of QX-314 to physiological external solutions produced instant partial inhibition of inward currents carried by sodium ions, suggesting that QX-314 is a permeant blocker. Maintained coapplication of QX-314 with capsaicin produced slowly developing reduction of outward currents carried by internal Cs, consistent with intracellular accumulation of QX-314 to concentrations of 50–100 μM. We conclude that QX-314 is directly permeant in the “standard” pore formed by TRPV1 channels and does not require either pore dilation or activation of additional downstream channels for entry.


Sign in / Sign up

Export Citation Format

Share Document