Abstract MP48: Crispr/cas9 Trpv1 Deletion In Rats Does Not Impair Mechano- And Chemo-sensory Renal Afferent Nerve Responses

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Leon J DeLalio ◽  
Sean D Stocker

Elevated renal afferent nerve activity (ARNA) or dysfunctional renal reflexes contributes to hypertension and chronic kidney disease. The transient receptor potential vanilloid type-1 (TRPV1) channel is expressed in renal sensory nerves, and intrarenal administration of the TRPV1 agonist capsaicin increases ARNA. Nonselective denervation of renal sensory nerves using high-concentration capsaicin reduces arterial blood pressure (ABP) in experimental models of hypertension. However, the role of TRPV1 channels in ARNA responses to chemo- and mechano-sensitive stimuli has not been directly tested. To test this hypothesis, we generated a novel TRPV1 rat knockout model (TRPV1 -/- ) using CRISPR/CAS9 to delete exon 3 . ARNA multifiber recordings were performed in male and female TRPV1 -/- and wild-type littermates (250-400g) after decerebration or Inactin anesthesia (data combined). Wild-type and TRPV1 -/- rats had no significant differences in baseline mean ABP (126±4 mmHg vs 138±5 mmHg, respectively; n=8-10) or heart rate (451±25 bpm vs 432±24 bpm, respectively; n=8-10). Baseline ARNA was not different between wild-type and TRPV1 -/- rats (16±3 Hz vs 28±6 Hz, respectively; n=8-10). Intrarenal artery infusion of the TRPV1 agonist capsaicin (0.1-10μM, 50μL per 15s) significantly increased ipsilateral ARNA in wild-type but not TRPV1 -/- rats (Δ discharge with 10μM: 65±3 Hz vs 6±1 Hz, respectively; n=5-7). As a second chemosensitive stimulus, intrarenal artery infusion of bradykinin (0.1-10μM, 50μL per 15s) produced similar increases in ipsilateral ARNA between wild-type and TRPV1 -/- rats (Δ discharge with 10μM: 52±6 Hz vs 73±18 Hz, respectively; n=5-6). Finally, elevated renal pelvic pressures (0-20mmHg; 30s) significantly increased ipsilateral ARNA in both wild-type and TRPV1 -/- rats; however, the ARNA response was significantly greater in TRPV1 -/- versus wild-type rats (Δ discharge with 20mmHg: 47±14 Hz versus 18±6 Hz, respectively; n=5-8). In conclusion, mechanosensitive and chemosensitive ARNA responses remain intact in TRPV1 -/- rats. The mechanisms responsible for renal sensory nerve activation remain unidentified and the impact of TRPV1 deletion in rat models of hypertension and kidney disease remains to be tested.

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Sean D Stocker ◽  
Leon J DeLalio

Renal denervation lowers arterial blood pressure (ABP) in both clinical populations and multiple experimental models of hypertension. This therapeutic effect is partly attributed to the removal of overactive renal sensory nerves that increase sympathetic efferent activity and ABP. Renal sensory nerves highly express TRPV1 channels, and administration of the TRPV1 agonist capsaicin increases renal sensory nerve activity. However, the extent by which TRPV1 channels directly contribute to renal nerve dependent models of hypertension has not been tested. To test this hypothesis, we generated a novel TRPV1 -/- rat using CRISPR/Cas9 and deletion of exon 3. Male and female TRPV1 -/- and wild-type littermates (8-12 weeks) were instrumented with telemetry. At 2 weeks later, renovascular hypertension via renal stenosis was produced by placement of a PTFE cuff (0.16 x 0.22 inches, 1mm long) around the right renal artery. Male TRPV1 -/- and wild-type rats had no differences in baseline mean ABP (99±2 vs 98±3 mmHg, respectively; n=7-9) or heart rate (390±7 vs 400±8 bpm, respectively). Renal stenosis significantly increased mean ABP in both groups; however, mean ABP was significantly lower at Day 28 in male TRPV1 -/- versus wild-type rats (125±8 vs 155±2 mmHg, respectively: P<0.01). Ganglionic blockade with chlorisondamine (2.5mg/kg, sc) at Day 28 produced a smaller fall in mean ABP of male TRPV1 -/- versus wild-type rats (-53±4 vs -86±3 mmHg, respectively; P<0.001). On the other hand, female TRPV1 -/- and wild-type rats had no differences in baseline mean ABP (102±2 vs 104±1 mmHg, respectively; n=6-9) or heart rate (419±8 vs 410±7 bpm, respectively). Renal stenosis significantly increased mean ABP in both groups; however, there were no differences at Day 28 between female TRPV1 -/- versus wild-type rats (117±8 vs 122±6 mmHg, respectively). Moreover, the increase in mean ABP was smaller in females versus males. The ganglionic blocker chlorisondamine produced similar depressor responses in female TRPV1 -/- versus wild-type rats (-64±7 vs -65±7 mmHg, respectively). These findings illustrate a sex difference in renovascular hypertension in rats, but importantly indicate that TRPV1 channels contribute to the established phase of renovascular hypertension in male rats.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Sean D Stocker ◽  
Sarah S Simmonds ◽  
Kirsteen N Browning

Accumulating evidence indicates a high salt diet increases cerebrospinal fluid sodium concentration to elevate sympathetic nerve activity (SNA) and arterial blood pressure (ABP) in salt-sensitive hypertension. Recent evidence suggests TRPV1 channels underlie the ability of the brain to sense changes in osmotic pressure. The present study investigated whether the sympathoexcitatory response to intracerebroventricular (ICV) infusion of hypertonic NaCl was mediated by central TRPV1 channels. In Inactin-anesthetized Sprague-Dawley rats, ICV infusion of 1M NaCl (n=8) significantly increased lumbar SNA (140±12%), heart rate (20±7bpm), and mean ABP (9±1mmHg). ICV pretreatment with the broad-spectrum TRPV channel blocker ruthenium red (5mM, 2uL, n=8) eliminated the sympathoexcitatory response to ICV 1M NaCl: lumbar SNA (106±5%), heart rate (-6±7bpm), and mean ABP (1±2mmHg). Similarly, ICV pretreatment with the selective TRPV1 channel antagonist SB366791 (3mM, 2uL, n=8) prevented any change in lumbar SNA (106±3%), heart rate (4±6), and mean ABP (1±1mmHg). ICV injection of ruthenium red or SB366791 alone did not alter any variable. Surprisingly, ICV infusion of 1M NaCl (1μL) produced similar pressor responses in wild-type versus TRPV1-/- mice (12±2 vs 11±2 mmHg, n>4). Pretreatment with SB366791 attenuated the pressor response in wild-type but not TRPV1-/- mice. In vitro patch clamp recordings of neurons in the ventral lamina terminalis reveal that increases in bath osmolality produced dose-dependent membrane depolarization (5 mOsm: 5.0±0.63 mV, 10 mOsm: 6.1±1.24 mV, 15 mOsm: 12.4±2.1; n=5, P<0.05) and increase discharge frequency (5 mOsm: 208±32%, 10 mOsm: 246±55%, 15 mOsm: 274±101%, 20 mOsm: 496±53%; n=5, P<0.05). These responses were attenuated by bath application of the broad spectrum TRPV blocker ruthenium red. Collectively, these observations suggest that central TRPV channels mediate changes in neuronal excitability and cardiovascular responses to central osmotic stimulation.


2021 ◽  
Vol 22 (7) ◽  
pp. 3360
Author(s):  
Mee-Ra Rhyu ◽  
Yiseul Kim ◽  
Vijay Lyall

In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.


2020 ◽  
Vol 21 (12) ◽  
pp. 4472
Author(s):  
Tamara Szabados ◽  
Kamilla Gömöri ◽  
Laura Pálvölgyi ◽  
Anikó Görbe ◽  
István Baczkó ◽  
...  

Cardiovascular diseases, including coronary artery disease, ischemic heart diseases such as acute myocardial infarction and postischemic heart failure, heart failure of other etiologies, and cardiac arrhythmias, belong to the leading causes of death. Activation of capsaicin-sensitive sensory nerves by the transient receptor potential vanilloid 1 (TRPV1) capsaicin receptor and other receptors, as well as neuropeptide mediators released from them upon stimulation, play important physiological regulatory roles. Capsaicin-sensitive sensory nerves also contribute to the development and progression of some cardiac diseases, as well as to mechanisms of endogenous stress adaptation leading to cardioprotection. In this review, we summarize the role of capsaicin-sensitive afferents and the TRPV1 ion channel in physiological and pathophysiological functions of the heart based mainly on experimental results and show their diagnostic or therapeutic potentials. Although the actions of several other channels or receptors expressed on cardiac sensory afferents and the effects of TRPV1 channel activation on different non-neural cell types in the heart are not precisely known, most data suggest that stimulation of the TRPV1-expressing sensory nerves or stimulation/overexpression of TRPV1 channels have beneficial effects in cardiac diseases.


2016 ◽  
Vol 311 (5) ◽  
pp. F1063-F1073 ◽  
Author(s):  
Thieu X. Phan ◽  
Hoai T. Ton ◽  
Yue Chen ◽  
Maureen E. Basha ◽  
Gerard P. Ahern

Transient receptor potential vanilloid type 1 (TRPV1) is a major nociceptive ion channel implicated in bladder physiology and/or pathophysiology. However, the precise expression of TRPV1 in neuronal vs. nonneuronal bladder cells is uncertain. Here we used reporter mouse lines (TRPV1-Cre:tdTomato and TRPV1PLAP-nlacZ) to map expression of TRPV1 in postnatal bladder. TRPV1 was not detected in the urothelium, however, we found marked expression of TRPV1 lineage in sensory nerves, and surprisingly, in arterial/arteriolar smooth muscle (ASM) cells. Tomato fluorescence was prominent in the vesical arteries and in small-diameter (15–40 μm) arterioles located in the suburothelial layer with a near equal distribution in bladder dome and base. Notably, arteriolar TRPV1 expression was greater in females than in males and increased in both sexes after 90 days of age, suggesting sex hormone and age dependency. Analysis of whole bladder and vesical artery TRPV1 mRNA revealed a similar sex and developmental dependence. Pharmacological experiments confirmed functional TRPV1 protein expression; capsaicin increased intracellular Ca2+ in ∼15% of ASM cells from wild-type female bladders, but we observed no responses to capsaicin in bladder arterioles isolated from TRPV1-null mice. Furthermore, capsaicin triggered arteriole constriction that was rapidly reversed by the TRPV1 antagonist, BCTC. These data show that predominantly in postpubertal female mice, bladder ASM cells express functional TRPV1 channels that may act to constrict arterioles. TRPV1 may therefore play an important role in regulating the microcirculation of the female bladder, and this effect may be of significance during inflammatory conditions.


Author(s):  
Ahsen Ustaoglu ◽  
Akinari Sawada ◽  
Chung Lee ◽  
Wei-Yi Lei ◽  
Chien-Lin Chen ◽  
...  

The underlying causes of heartburn, characteristic symptom of gastro-esophageal reflux disease(GERD), remain incompletely understood. Superficial afferent innervation of the esophageal mucosa in nonerosive reflux disease(NERD) may drive nociceptive reflux perception, but its acid-sensing role has not yet been established. Transient receptor potential vanilloid subfamily member-1(TRPV1), transient receptor potential Melastatin 8(TRPM8), and acid sensing ion channel 3(ASIC3) are regulators of sensory nerve activity and could be important reflux-sensing receptors within the esophageal mucosa. We characterised TRPV1, TRPM8, and ASIC3 expression in esophageal mucosa of GERD patients. We studied 10 NERD, 10 erosive reflux disease(ERD), 7 functional heartburn(FH), and 8 Barrett's esophagus(BE) patients. Biopsies obtained from the distal esophageal mucosa were co-stained with TRPV1, TRPM8, or ASIC3, and CGRP, CD45, or E-cadherin. RNA expression of TRPV1, TRPM8, and ASIC3 was assessed using qPCR. NERD patients had significantly increased expression of TRPV1 on superficial sensory nerves compared to ERD (p=0.028) or BE (p=0.017). Deep intrapapillary nerve endings did not express TRPV1 in all phenotypes studied. ASIC3 was exclusively expressed on epithelial cells most significantly in NERD and ERD patients (p=<0.0001). TRPM8 was expressed on submucosal CD45+ leukocytes. Superficial localisation of TRPV1-immunoreactive nerves in NERD, and increased ASIC3 co-expression on epithelial cells in NERD and ERD suggests a mechanism for heartburn sensation. Esophageal epithelial cells may play a sensory role in acid reflux perception and act interdependently with TRPV1-expressing mucosal nerves to augment hypersensitivity in NERD patients, raising the enticing possibility of topical antagonists for these ion channels as a therapeutic option.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Leon J DeLalio ◽  
Sean D Stocker

Renal sensory nerves contribute to hypertension and renal dysfunction in chronic kidney disease. Selective chemokines (e.g., bradykinin or capsaicin) activate renal sensory nerves and produce reflexive efferent sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses. SNA, ABP, and renal function exhibit circadian patterns; yet the impact of circadian cycle on chemosensitive responses is unknown. We hypothesized that SNA and hemodynamic responses would be greater during the active phrase or nighttime versus the inactive phase or daytime. In Inactin anesthetized rats, simultaneous renal and splanchnic SNA and ABP were measured during intrarenal arterial infusion of capsaicin or bradykinin (0.1 μM - 30.0 μM; 50 μl over 15 s) at nighttime (N; 20:00-04:00; n= 12M, 10F) versus daytime (D; 09:00-16:00; n= 8M, 8F). Baseline mean ABP was significantly elevated during nighttime (N: 104±2 mmHg; D: 97±2 mmHg, p=0.04). Intrarenal capsaicin infusion produced concentration-dependent increases in renal and splanchnic SNA. Renal SNA increased more at nighttime versus daytime at 10 μM (N: 723±136 vs D: 409±79 %; p=0.03) and 30 μM (N: 826±181 vs D: 509±80 %; p=0.03). Similarly, splanchnic SNA was greater during nighttime versus daytime at 10 μM (N: 501±117 vs D: 204±53 %, p=0.03) and 30 μM (N: 537±101 vs D: 295±68 %; p=0.03). However, ABP responses were similar between nighttime versus daytime (30uM: 7±1 vs 6±1 mmHg, respectively). Intrarenal infusion of bradykinin produced concentration-dependent increases in renal and splanchnic SNA. Renal SNA increased more at nighttime versus daytime at 10 μM (N: 1773±216 vs D: 1249±112 %; p=0.01) and 30 μM (N: 2605±263 vs D: 1783±163 %; p=0.001). Similarly, splanchnic SNA was exaggerated at nighttime versus daytime at 0.1 μM (N: 163±65 vs D: 0±0 %; p=0.02), 1.0 μM (N: 566±114 vs D: 184±52 %; p=0.005), 10 μM (N: 1110±193 vs D: 583±87 %; p=0.006) and 30 μM (N: 2008±193 vs D: 1044±162 %; p<0.001). ABP response were similar between nighttime versus daytime at 30 μM (10±2 vs 6±1 mmHg, respectively). Circadian cycle exaggerates sympathoexcitatory responses produced by chemosensitive renal sensory nerve activation.


2008 ◽  
Vol 294 (4) ◽  
pp. R1285-R1293 ◽  
Author(s):  
A. Caitlynn Taylor ◽  
John J. McCarthy ◽  
Sean D. Stocker

Neurons of the organum vasculosum of the lamina terminalis (OVLT) are necessary for thirst and vasopressin secretion during hypersmolality in rodents. Recent evidence suggests the osmosensitivity of these neurons is mediated by a gene product encoding the transient receptor potential vanilloid-1 (TRPV1) channel. The purpose of the present study was to determine whether mice lacking the TRPV1 channel had blunted thirst responses and central Fos activation to acute and chronic hyperosmotic stimuli. Surprisingly, TRPV1−/− vs. wild-type mice ingested similar amounts of water after injection (0.5 ml sc) of 0.5 M NaCl and 1.0 M NaCl. Chronic increases in plasma osmolality produced by overnight water deprivation or sole access to a 2% NaCl solution for 48 h produced similar increases in water intake between wild-type and TRPV1−/− mice. There were no differences in cumulative water intakes in response to hypovolemia or isoproterenol. In addition, the number of Fos-positive cells along the lamina terminalis, including the OVLT, as well as the supraoptic nucleus and hypothalamic paraventricular nucleus, was similar between wild-type and TRPV1−/− mice after both acute and chronic osmotic stimulation. These findings indicate that TRPV1 channels are not necessary for osmotically driven thirst or central Fos activation, and thereby suggest that TRPV1 channels are not the primary ion channels that permit the brain to detect changes in plasma sodium concentration or osmolality.


2014 ◽  
Vol 306 (4) ◽  
pp. H574-H584 ◽  
Author(s):  
Jack Rubinstein ◽  
Valerie M. Lasko ◽  
Sheryl E. Koch ◽  
Vivek P. Singh ◽  
Vinicius Carreira ◽  
...  

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


Sign in / Sign up

Export Citation Format

Share Document