Abstract P207: High Salt Intake desynchronizes the Molecular Clock in Rats

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Joshua S Speed ◽  
Kelly A Hyndman ◽  
Kaehler A Roth ◽  
Malgorzata Kasztan ◽  
Jermaine G Johnston ◽  
...  

Circadian rhythms in physiologic functions are driven, at the molecular level, by a group of transcription factors that oscillate over a 24 hour period, collectively termed the molecular clock. Within the kidney, it has been shown that the molecular clock directly influences transcription of Na + transporters and channels, including ENaC. ENaC is regulated by endothelin-1 (ET-1), via ET B receptor activation, in response to high salt intake. Thus, we hypothesized that increases in dietary sodium regulate the renal molecular clock (which in turn would facilitate Na+ homeostasis) through an ET B dependent mechanism. To address this question, we examined the effect of high salt (HS) intake on renal clock gene ( Bmal1, Cry1, Per1, Per2 ) expression. Control and ET B receptor deficient (ET B def) rats (a model of elevated renal ENaC) were placed on either HS or normal salt (NS) for two weeks and euthanized every 4 hours beginning at Zeitgeber Time 0 (Lights on). In the inner medulla, HS causes a phase delay in Bmal1 (Fig 1A) expression in control but not ET B def rats (Fig 1B). In addition, HS suppressed the expression of Cry1 , and Per2 during the respective acrophase in both control and ET B def rats (Fig 1C-1F) with no significant effect on Per1 . In contrast, no significant difference in the expression of Bmal1, Cry1, Per2, or Per1 (Fig 1I-1P) was found in response to HS in the renal cortex of either control or ET B def. These data indicate that HS feeding desynchronizes the molecular clock within the kidney and provides evidence that peripheral clocks are regulated in a cell type specific manner, even within the same organ.

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Robert A Larson ◽  
Andrew D Chapp ◽  
Michael J Huber ◽  
Zixi Cheng ◽  
Zhiying Shan ◽  
...  

High salt (HS) intake sensitizes pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) leading to augmented neuronal excitability. Recently, we reported that dysfunction of Ca 2+ dependent K + channels in the PVN contributes to HS intake induced sympathoexcitation. The endoplasmic reticulum (ER) acts as a Ca 2+ store and plays an important role in regulating intracellular Ca 2+ homeostasis. The ER Ca 2+ ATPase is responsible for maintaining the high level of ER Ca 2+ and loss of function would deplete the Ca 2+ store contributing to the reduced activity of Ca 2+ dependent K + channels. We hypothesized that a 2% (NaCl) HS diet for 5 weeks would reduce function of the ER Ca 2+ ATPase and augment excitability of PVN neurons with axon projections to the rostral ventrolateral medulla (PVN-RVLM) identified by retrograde label. In whole cell current-clamp recordings from PVN-RVLM neurons, graded current injections evoked graded increases in spike frequency. Maximum discharge was evoked by +200 pA injections and averaged 22±2 Hz (n=6) in normal salt (NS) control and was significantly augmented (p<0.05) by HS diet 34±5 Hz (n=8). Bath application of thapsigargin (TG) (0.5 μM), the ER Ca 2+ ATPase inhibitor, augmented excitability of PVN-RVLM neurons in NS (32±4 Hz, n=5, p<0.05), yet had no significant effect in HS rats (32±6 Hz, n=6). ER Ca 2+ ATPase function was assessed in whole animal preparations by bilateral PVN microinjection of TG in anesthetized rats. PVN microinjection of TG (0.15, 0.3 0.75 and 1.5 nmol/100nl) increased sympathetic nerve activity (SNA) and mean arterial pressure (MAP) in a dose-dependent manner in NS rats. Maximum increases in splanchnic SNA (SSNA), renal SNA (RSNA) and MAP elicited by PVN TG (0.75 nmol/100nl; n=5) were 93±7%, 75±7%, and 11±2mmHg, respectively. In contrast, sympathoexcitatory responses to PVN TG (0.75 nmol/100nl; n=5) were attenuated in HS treated rats (SSNA 41±8%, RSNA 22±5%, p<0.05 vs. NS) while MAP responses demonstrated no significant difference (+8±2 mmHg, p>0.05 vs NS). Our data indicate that a HS diet reduces ER Ca 2+ ATPase activity and augments excitability of PVN-RVLM neurons in vitro. Altered ER Ca 2+ homeostasis may contribute to sympathoexcitation through loss of Ca 2+ dependent K + channel activity in the PVN.


2015 ◽  
Vol 308 (5) ◽  
pp. H530-H539 ◽  
Author(s):  
Koji Ito ◽  
Yoshitaka Hirooka ◽  
Kenji Sunagawa

The cardiac sympathetic afferent (CSA), which plays an important role in heart-brain communication for sympathoexcitation, is stimulated in heart failure. Additionally, high salt intake leads to further sympathoexcitation due to activation of hypothalamic epithelial Na+ channels (ENaCs) in heart failure. In the present study, we stimulated the CSA in adult male mice by epicardial application of capsaicin and using ethanol as a control to determine whether CSA stimulation led to activation of hypothalamic ENaCs, resulting in salt-induced sympathoexcitation. Three days after capsaicin treatment, an upregulation of hypothalamic α-ENaCs, without activation of mineralocorticoid receptors, was observed. We also examined expression levels of the known ENaC activator TNF-α. Hypothalamic TNF-α increased in capsaicin-treated mice, whereas intracerebroventricular infusion of the TNF-α blocker etanercept prevented capsaicin-induced upregulation of α-ENaCs. To examine brain arterial pressure (AP) sensitivity toward Na+, we performed an intracerebroventricular infusion of high Na+-containing (0.2 M) artificial cerebrospinal fluid. AP and heart rate were significantly increased in capsaicin-treated mice compared with control mice. CSA stimulation also caused excitatory responses with high salt intake. Compared with a regular salt diet, the high-salt diet augmented AP, heart rate, and 24-h urinary norepinephrine excretion, which is an indirect marker of sympathetic activity with mineralocorticoid receptor activation, in capsaicin-treated mice but not in ethanol-treated mice. Treatment with etanercept or the ENaC blocker benzamil prevented these salt-induced excitatory responses. In summary, we show that CSA stimulation leads to an upregulation of hypothalamic α-ENaCs mediated via an increase in TNF-α and results in increased salt sensitivity.


2014 ◽  
Vol 144 (10) ◽  
pp. 1571-1578 ◽  
Author(s):  
Isis A. Katayama ◽  
Rafael C. Pereira ◽  
Ellen P. B. Dopona ◽  
Maria H. M. Shimizu ◽  
Luzia N. S. Furukawa ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3474
Author(s):  
Yasuko Yoshida ◽  
Keisei Kosaki ◽  
Takehito Sugasawa ◽  
Masahiro Matsui ◽  
Masaki Yoshioka ◽  
...  

The World Health Organization has recommended 5 g/day as dietary reference intakes for salt. In Japan, the averages for men and women were 11.0 g/day and 9.3 g/day, respectively. Recently, it was reported that amounts of sodium accumulation in skeletal muscles of older people were significantly higher than those in younger people. The purpose of this study was to investigate whether the risk of sarcopenia with decreased muscle mass and strength was related to the amount of salt intake. In addition, we investigated its involvement with renalase. Four groups based on age and salt intake (“younger low-salt,” “younger high-salt,” “older low-salt,” and “older high-salt”) were compared. Stratifying by age category, body fat percentage significantly increased in high-salt groups in both younger and older people. Handgrip strength/body weight and chair rise tests of the older high-salt group showed significant reduction compared to the older low-salt group. However, there was no significant difference in renalase concentrations in plasma. The results suggest that high-salt intake may lead to fat accumulation and muscle weakness associated with sarcopenia. Therefore, efforts to reduce salt intake may prevent sarcopenia.


Author(s):  
Chikako Oyabu ◽  
Emi Ushigome ◽  
Yuriko Ono ◽  
Ayaka Kobayashi ◽  
Yoshitaka Hashimoto ◽  
...  

Objectives: We verified the clinical usefulness of an approach method in which a physician gives simple salt reduction instructions during outpatient visits to patients with type 2 diabetes. Methods: This study was an open-blind, randomized controlled trial. Subjects were outpatients with type 2 diabetes whose estimated salt intake using spot morning urine sample exceeded the target of salt intake. The control group (CG) was notified only of the current salt intake, whereas the intervention group (IG) was given the brief salt reduction instruction by a physician in addition to the information regarding their current salt intake. Results: The change in estimated salt intake was −0.6 g (from 10.1 to 9.5 g, p = 0.029) in the CG after 8 weeks, and −0.9 g (from 10.1 to 9.2 g, p = 0.001) in the IG, although there were no significant differences between them (p = 0.47). After 24 weeks, both groups no longer differed significantly from the baseline. In addition, multivariate linear regression analyses indicated that high salt intake and low estimated glomerular filtration rate at baseline were significantly associated with salt reduction after 8 weeks. Conclusions: Salt-reducing effects were observed after 8 weeks in both the IG and CG, but no significant difference was observed. Moreover, patients with high salt intake and renal disfunction may be more effective in accepting salt reduction instructions. Making patients aware of the importance of salt reduction through a physician is effective for continuous salt reduction, and it is important to continue regular and repetitive guidance.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nirong Gong ◽  
Chun Zhou ◽  
Jianxia Hu ◽  
Xiaohong Zhong ◽  
Zhixiu Yi ◽  
...  

Objective: This study aims to investigate the relationship between dietary salt intake and residual renal function in peritoneal dialysis (PD) patients.Methods: The daily salt intake of the patients was calculated based on a 3 day dietary record. Sixty-two patients were divided into three groups: 33 patients in the low salt intake group (salt intake &lt;6.0 g/day), 17 in the medium salt intake group (salt intake 6.0 to &lt;8.0 g/day), and 12 in the high salt intake group (salt intake ≥8.0 g/day). Regular follow-up was conducted every 3 months. Urine volume, peritoneal ultrafiltration volume, and other clinical indicators were recorded. Biochemical indexes were detected to evaluate the changes in residual renal function and peritoneal function during follow-up.Results: A positive correlation between dietary sodium intake and sodium excretion was found. During 12-month follow-up, a decrease of residual renal function showed a significant difference among the three groups (p = 0.041) (15.3 ± 27.5 vs. 12.5 ± 11.5 vs. 32.9 ± 18.4 L/W/1.73 m2 in the low-, medium-, and high salt intake groups, respectively). Consistently, a higher decline of residual renal function (adjusted β, 20.37; 95% CI, 2.83, 37.91) was found in participants with high salt intake (salt intake ≥8 g/day) compared with those in non-high salt intake.Conclusion: Our study showed that the sodium excretion by peritoneal dialysis was positively correlated with dietary sodium intake in PD patients. The high salt intake diet (salt intake ≥8 g/day) may lead to a faster decline of residual renal function in PD patients.


1997 ◽  
Vol 273 (6) ◽  
pp. F976-F983 ◽  
Author(s):  
William J. Welch ◽  
Bo Peng ◽  
Kazuhisa Takeuchi ◽  
Keishi Abe ◽  
Christopher S. Wilcox

The tubuloglomerular feedback (TGF) response is potentiated by thromboxane A2(TxA2) and/or prostaglandin endoperoxide (PGH2) acting on specific receptors. Infusion of the TxA2/PGH2mimetic, U-46,619, into conscious rats leads to hypertension that is potentiated by a high-salt intake. Therefore, we tested the hypothesis that a high-salt intake enhances the expression of transcripts for TxA2/PGH2receptors in the kidney and glomeruli and enhances the response of TGF to TxA2/PGH2receptor stimulation. Groups of rats were accommodated to a low-salt (LS), normal salt (NS), or high-salt (HS) diet for 8–10 days. TxA2/PGH2receptor mRNA was detected by reverse transcription-polymerase chain reaction in kidney cortex, isolated glomeruli, and abdominal aorta. TxA2/PGH2mRNA abundance was significantly ( P< 0.001) increased during intake of high-salt compared with low-salt diets in the kidney cortex (1.34 ± 0.10 vs. 0.84 ± 0.04 arbitrary units) and isolated outer cortical glomeruli (0.68 ± 0.04 vs. 0.32 ± 0.03 arbitrary units), but there was no effect of salt on TxA2/PGH2receptor mRNA expression in the aorta. Maximal TGF responses were assessed from the increase in proximal stop flow pressure (an index of glomerular capillary pressure) during increases in loop of Henle perfusion with artificial tubular fluid from 0 to 40 nl/min. Compared with vehicle, the enhancement of maximal TGF with U-46,619 (10−6 M) added to the perfusate was greater in rats adapted to high-salt than normal salt (HS: +9.6 ± 1.1 vs. NS: +5.1 ± 0.4 mmHg; P < 0.001) or low-salt (LS: +3.8 ± 1.3 mmHg; P < 0.001) intakes. Responses to U-46,619 at each level of salt intake were blocked by >70% by the TxA2/PGH2receptor antagonist ifetroban. In contrast, enhancement of TGF by peritubular capillary perfusion of arginine vasopressin (AVP; 10−7 M) was similar in high-salt and low-salt rats (HS: +1.5 ± 0.6 vs. LS: +1.6 ± 0.5 mmHg; not significant). We conclude that salt loading increases selectively the abundance of TxA2/PGH2receptor transcripts in the kidney cortex and glomerulus, relative to the aorta, and enhances selectively TGF responses to TxA2/PGH2receptor activation but not to AVP.


1995 ◽  
Vol 269 (4) ◽  
pp. H1407-H1414 ◽  
Author(s):  
M. A. Boegehold

Ingestion of a high-salt diet has previously been shown to suppress the endogenous influence of nitric oxide (NO) on arteriolar tone in hypertension-resistant, salt-resistant Dahl (SR/Jr) rats. Because luminal blood flow can be an important stimulus for endothelial NO release, this study was undertaken to determine whether high salt intake can also lead to a deficit in the direct flow-dependent regulation of arteriolar diameter. The spinotrapezius muscle microvasculature was studied by in vivo microscopy in SR/Jr rats fed low (0.45%)- or high (7%)-salt diets for 2 wk, and arcade arteriole responses to increased luminal flow (via parallel vessel occlusion) were studied in both dietary groups. There was no significant difference between groups in arterial pressure or in resting arteriolar diameters, volume flows, or wall shear rates. In low-salt SR/Jr, a 36% increase in luminal flow produced an average arteriolar dilation of 38% that was significantly reduced by the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA). In high-salt SR/Jr, a similar flow increase produced an average dilation of only 16% (P < 0.05 vs. low-salt SR/Jr), and this response was unaffected by L-NMMA. Inhibition of cyclooxygenase activity with meclofenamate had no effect on this response in either group. These findings suggest that NO release mediates a portion of flow-dependent arteriolar dilation in rat spinotrapezius muscle and that high salt intake, in the absence of hypertension, can attenuate this response via a suppression of NO activity.


2012 ◽  
Vol 18 (8) ◽  
pp. 691-701 ◽  
Author(s):  
Xiu-Yang Li ◽  
Xian-Lei Cai ◽  
Ping-Da Bian ◽  
Liu-Ru Hu

Sign in / Sign up

Export Citation Format

Share Document