Abstract P277: β-arrestin-2-mediated Vasodilatation In Mouse Mesenteric Arteries

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Victor M Pulgar ◽  
Krisztian Toth

As part of GPCRs-dependent signaling, β -arrestin-2 has been shown to stimulate eNOS activity and thus has the potential to modulate vascular function. We hypothesized that the absence of β -arrestin-2 would alter vascular dilatation and contraction in resistance arteries. We tested acetylcholine (ACh)-dependent relaxation and phenylephrine (PE)-dependent contraction in mouse mesenteric arteries isolated from 3-mo old male C57Bl6 (WT, n=5) and β -arrestin-2 KO ( βarr2 -/- , n=5) mice. Segments were mounted in a Wire Myograph (DMT) for determination of isometric force; vessels studied included intact, without endothelium, or pre-incubated with L-NAME (10 -4 M). Dose-response curves were performed for ACh (10 -10 -10 -4.5 M) and PE (10 -10 -10 -4.5 M). Data were acquired using a PowerLab (ADInstruments) system. Maximal response to ACh (ACh MAX ) was expressed as maximal relaxation after pre-constriction, maximal response to PE (PE MAX ) as % of contraction to 75mM KCl (%K MAX ), and sensitivity as pD 2 (-Log[EC 50 ]). Data were analyzed using Prism (GraphPad). After pre-constriction (PE, 3x10 -6 M), arteries from βarr2 -/- mice presented similar ACh MAX (79±6 vs. 82±6, p>0.05) and lower sensitivity to ACh compared to WT (6.66±0.2 vs. 7.12±0.1, p<0.05). The sensitivity of the contraction to PE was increased in βarr2 -/- arteries (6.4±0.2 vs. 6.04±0.1, p<0.05), with no changes in PE MAX . Differences in vasodilation and contraction were abolished in arteries without endothelium and in arteries pre-incubated with L-NAME. We conclude that the absence of β -arrestin-2 induces a pro-contractile phenotype in an endothelium- and nitric oxide-dependent manner in mouse resistance arteries.

2012 ◽  
Vol 302 (12) ◽  
pp. R1426-R1435 ◽  
Author(s):  
Lisa Nguy ◽  
Holger Nilsson ◽  
Jaana Lundgren ◽  
Maria E. Johansson ◽  
Tom Teerlink ◽  
...  

The aim of the present study was to characterize the function of resistance arteries, and the aorta, in rats with adenine-induced chronic renal failure (A-CRF). Sprague-Dawley rats were randomized to chow with or without adenine supplementation. After 6–10 wk, mesenteric arteries and thoracic aortas were analyzed ex vivo by wire myography. Plasma creatinine concentrations were elevated twofold at 2 wk, and eight-fold at the time of death in A-CRF animals. Ambulatory systolic and diastolic blood pressures measured by radiotelemetry were significantly elevated in A-CRF animals from week 3 and onward. At death, A-CRF animals had anemia, hyperphosphatemia, hyperparathyroidism, and elevated plasma levels of asymmetric dimethylarginine and oxidative stress markers. There were no significant differences between groups in the sensitivity, or maximal response, to ACh, sodium nitroprusside (SNP), norepinephrine, or phenylephrine in either mesenteric arteries or aortas. However, in A-CRF animals, the rate of aortic relaxation was significantly reduced following washout of KCl (both in intact and endothelium-denuded aorta) and in response to ACh and SNP. Also the rate of contraction in response to KCl was significantly reduced in A-CRF animals both in mesenteric arteries and aortas. The media of A-CRF aortas was thickened and showed focal areas of fragmented elastic lamellae and disorganized smooth muscle cells. No vascular calcifications could be detected. These results indicate that severe renal failure for a duration of less than 10 wk in this model primarily affects the aorta and mainly slows the rate of relaxation.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Victor M Pulgar ◽  
Anne B Jeffers ◽  
Mark C Chappell ◽  
Azeez A Aileru

Endothelin-1 (ET-1) and Angiotensin II (Ang II) are important modulators of vascular tone. Contraction to ET-1 is dependent on the activation of ETA and ETB receptors. The contractile receptor ETA is localized in the smooth muscle cells whereas ETB receptors are predominantly found in the endothelium. We investigated the role of ETB receptors in ET-1 contraction in a model of Ang II-dependent hypertension, the (mRen2)27 rat. Third branch mesenteric arteries were isolated from 12 weeks old male Sprague-Dawley (SD) control and (mRen2)27 hypertensive rats and mounted on a wire Multi Myograph (Model 620, DMT) for determination of isometric force. Dose response curves to ET-1 (10 -11 -10 -7 M) were performed in arterial segments that were either intact, endothelium denuded or preincubated with the ETB specific antagonist BQ788 10 -6 M. Endothelial denudation was performed by passing a human hair through the arterial lumen and functional loss of the endothelium was confirmed by the absence of vasodilatation to acetylcholine. Maximal responses were expressed as percent of maximal response to 75mM KCl (%K MAX ) and the sensitivity as pD 2 (pD 2 = -Log[EC 50 ]). In SD control rats, addition of BQ788 significantly increased ET-1 sensitivity in intact arteries (8.9±0.1 vs 9.3±0.1, p<0.05) and the increase was abolished by endothelial denudation with no change in maximal response. However, the ETB blocker BQ788 increased the maximal tension in both intact (127±2 vs 154±13 %K MAX , p<0.05); and denuded (156±9 vs 188±12 %K MAX , p<0.05) arteries from (mRen2)27 rats with no change in sensitivity. In summary, the present results demonstrate that endothelial ETB receptors influence vasodilatory function in control SD rats, but apparently attenuate the contraction to ET-1 in the (mRen2)27 rats. We conclude that the expression of ETB receptors in the endothelium and smooth muscle of resistance vessels in the (mRen2)27 rats may function as a compensatory mechanism to the increased blood pressure or activated angiotensin system found in this model of hypertension.


Endocrinology ◽  
2003 ◽  
Vol 144 (8) ◽  
pp. 3338-3343 ◽  
Author(s):  
Liomar A. A. Neves ◽  
Aleck F. Williams ◽  
David B. Averill ◽  
Carlos M. Ferrario ◽  
Michael P. Walkup ◽  
...  

Abstract The vasoactive effect of angiotensin (Ang)-(1–7) in mesenteric resistance arteries together with its plasma and kidney concentration and urinary excretion was assessed in pregnant and virgin rats. Mesenteric arteries (230–290 μm) were mounted in a pressurized myograph system and Ang-(1–7) concentration-dependent response curves (10−10–10−5m) were determined in arteries preconstricted with endothelin-1 (10−7m). The Ang-(1–7) response was investigated in vessels with and without pretreatment with the Ang-(1–7) antagonist [d-[Ala7]-Ang-(1–7)] (10−7m). Ang-(1–7) caused a significantly enhanced, concentration-dependent dilation of mesenteric vessels (EC50 = 2.7 nm) from pregnant compared with virgin female rats. d-[Ala7]-Ang-(1–7) eliminated the vasodilator effect of Ang-(1–7). There was no significant change in plasma concentration of Ang-(1–7) in pregnant animals. On the other hand, 24 h urinary excretion and kidney concentration of Ang-(1–7) were significantly higher in pregnant animals. The increased mesenteric dilation to Ang-(1–7) with enhanced kidney concentration and 24 h urinary excretion rate of Ang-(1–7) suggests an important role for this peptide in cardiovascular regulation during pregnancy.


2016 ◽  
Vol 76 (2) ◽  
pp. 500-505
Author(s):  
F. A. Moraga ◽  
N. Urriola-Urriola

Abstract Previous studies performed in intertidal fish (Girella laevifrons),as well as marine fish (Isacia conceptionis), showed that acetylcholine (ACh) produced contractions mediated by cyclooxygenases that were dependent on the area and potency of contraction in several arterial vessels. Given that the role of nitric oxide is poorly understood in fish, the objective of our study was to evaluate the role of nitric oxide in branchial afferent (ABA), branchial efferent (ABE), dorsal (DA) and mesenteric (MA) arterial vessels from both Girella laevifrons and Isacia conceptionis. We studied afferent and efferent branchial, dorsal and mesenteric arteries that were dissected from 6 juvenile specimens. Isometric tension studies were done using dose response curves (DRC) for Ach (10–13 to 10–3 M) and blockade with L-NAME (10–5 M), and DRC for sodium nitroprusside (SNP, a donor of NO). L-NAME produced an attenuation of the contractile response in the dorsal, afferent and efferent branchial arteries and a potentiation of the contraction in the MA. SNP caused 70% dilation in the mesenteric artery and 40% in the dorsal artery. Our results suggest that Ach promotes precarious dilatation in MA mediated by NO; data that is supported by the use of sodium nitroprusside. In contrast, in the vessels DA, ABA and EBA our results support that the pathway Ach-NO-relaxation is absent in both species.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Livia L Camargo ◽  
Augusto C Montezano ◽  
Adam Harvey ◽  
Sofia Tsiropoulou ◽  
Katie Hood ◽  
...  

In hypertension, activation of NADPH oxidases (Noxs) is associated with oxidative stress and vascular dysfunction. The exact role of each isoform in hypertension-associated vascular injury is still unclear. We investigated the compartmentalization of Noxs in VSMC from resistance arteries of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Expression of Nox1 and Nox4 was increased in SHR cells (96.6±28.7% and 48.2±21.2% vs WKY, p<0.05), as well as basal ROS levels measured by chemiluminescence (110.2±26.4% vs WKY, p<0.05) and amplex red (105.2±33.2% vs WKY, p<0.05). Phosphorylation of unfolded protein response activators, PERK and IRE1α, and expression of ER chaperone BiP were elevated in SHR cells (p<0.05 vs WKY), indicating activation of ER stress response. Immunoblotting after organelle fractionation demonstrated that Noxs are expressed in an organelle-specific manner, with Nox1, 2 and 4 present in plasma membrane, ER and nucleus, but not in mitochondria. In SHR cells, NoxA1ds (Nox1 inhibitor, 10μM) and GKT136901 (Nox1/4 inhibitor, 10μM) decreased AngII-induced ROS levels (p<0.001 vs Ctl). Additionally, mito-tempol (mitochondrial-targeted antioxidant, 50nM) and 4-PBA (ER stress inhibitor, 1mM) decreased basal ROS levels in SHR cells (p<0.05 vs Ctl). Furthermore, oxidation of the antioxidant enzymes Peroxiredoxins (Prx) was increased in SHRSP compared to WKY (2.51±0.14 vs 0.56±0.07, p<0.001). One-dimensional isoelectric focusing revealed that cytosolic Prx2 and mitochondrial Prx3 were more oxidized in SHRSP than WKY cells. Using a biotin-tagged dimedone-based probe (DCP-Bio) we identified oxidation of ER stress proteins BiP and IRE1. To investigate the effect of protein oxidation in vascular function, vascular reactivity was evaluated in isolated mesenteric arteries. Inhibition of general oxidation (DTT 1mM; Emax: 111.7±33.1) and peroxiredoxin (Conoidin A 10nM; Emax: 116.0±7.3) reduces vascular contraction in response to noradrenalin in WKY rats (Emax: 166.6±30.2; p<0.05). These findings suggest an important role for Nox1/4 in redox-dependent organelle dysfunction and post-translational modification of proteins, processes that may play an important role in vascular dysfunction in hypertension.


2000 ◽  
Vol 278 (2) ◽  
pp. H567-H576 ◽  
Author(s):  
C. Cadorette ◽  
B. Sicotte ◽  
M. Brochu ◽  
J. St-Louis

The contribution of potassium channels [ATP-sensitive potassium (KATP) and high-conductance calcium-activated potassium (BKCa) channels] in the resistance of aortic rings of term pregnant rats to phenylephrine (Phe), arginine vasopressin (AVP), and KCl was investigated. Concentration-response curves to tetraethylammonium (TEA), a nonselective K+ channel inhibitor, were obtained in the absence or presence of KCl. TEA induced by itself concentration-dependent responses only in aortic rings of nonpregnant rats. These responses to TEA could be modulated in both groups of rings by preincubation with different concentrations of KCl. Concentration-response curves to Phe, AVP, and KCl were obtained in the absence or presence of cromakalim or NS-1619 (KATP and BKCa openers, respectively) and glibenclamide or iberiotoxin (KATPand BKCa inhibitors, respectively). Cromakalim significantly inhibited the responses to the three agonists in a concentration-dependent manner in both groups of rats. Alternatively, in the pregnant group of rats, glibenclamide increased the sensitivity to all three agonists. NS-1619 also inhibited the response to all agonists. With AVP and KCl, its effect was greater in aortic rings of pregnant than nonpregnant rats. Finally, iberiotoxin increased the sensitivity to all three agents. This effect was more important in aortic rings of nonpregnant rats and was accompanied by an increase of the maximal response to Phe and AVP. These results suggest that potassium channels are implicated in the control of basal membrane potential and in the blunted responses to these agents during pregnancy.


Author(s):  
Tays Amanda Felisberto Gonçalves ◽  
Renildo Moura da Cunha ◽  
Dionatas Ulises de Oliveira Meneguetti ◽  
Marcio Roberto Viana Santos ◽  
José Maria Barbosa- Filho ◽  
...  

Aims: To evaluate the vasorelaxant effect induced by the essential oil of the leaves of O. duckei Vattimo (ODEO) and its main constituent, trans-caryophyllene, in rat superior mesenteric arteries. Methodology: Isolated rat superior mesenteric rings were suspended by cotton threads for isometric tension recordings in Tyrode’s solution at 37ºC, gassed with 95% O2 and 5% CO2 and different ODEO concentrations (0.1-300 μg/mL) or trans-caryophyllene (1-1000 μg/mL) were added cumulatively to the organ baths. Results: Vasorelaxant effect induced by the essential oil of Ocotea duckei leaves (ODEO) and its main constituent, trans-caryophyllene (60.54 %), was evaluated in this work. In intact isolated rat superior mesenteric rings ODEO (0.1-300 μg/mL, n=6) induced concentration-dependent relaxation of tonus induced by phenylephrine (10 µM) or K+-depolarizing solution (KCl 80 mM) (IC50=31±5, 5±0.4 µg/mL, respectively, n=6). The relaxations of phenylephrine-induced contractions were not significantly attenuated after removal of the vascular endothelium (IC50=25±5 µg/mL). ODEO antagonized the concentration-response curves to CaCl2 (10-6-3x10-2 M) and Bay K 8644 (10-10-3x10-6 M). Furthermore, in nominally without calcium solution, ODEO significantly inhibited, in a concentration-dependent manner, transient contractions induced by 10 µM phenylephrine or 20 µM caffeine. Trans-caryophyllene induced vasorelaxations, however, this effect was 18.6 times less potent when compared to ODEO-induced vasorelaxations. Conclusion: The relaxant effect induced by ODEO in rat superior mesenteric artery rings is endothelium-independent and seems to be related to both, inhibition of Ca2+ influx through L-type voltage-gated Ca2+-channels sensitive to dihydropyridines and inhibition of the calcium release from intracellular IP3-and caffeine-sensitive stores.


Hypertension ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 216-227 ◽  
Author(s):  
Estéfano Pinilla ◽  
Simon Comerma-Steffensen ◽  
Judit Prat-Duran ◽  
Luis Rivera ◽  
Vladimir V. Matchkov ◽  
...  

Transglutaminase 2 (TG2) is an enzyme which in the open conformation exerts transamidase activity, leading to protein cross-linking and fibrosis. In the closed conformation, TG2 participates in transmembrane signaling as a G protein. The unspecific transglutaminase inhibitor cystamine causes vasorelaxation in rat resistance arteries. However, the role of TG2 conformation in vascular function is unknown. We investigated the vascular effects of selective TG2 inhibitors by myography in isolated rat mesenteric and human subcutaneous resistance arteries, patch-clamp studies on vascular smooth muscle cells, and blood pressure measurements in rats and mice. LDN 27219 promoted the closed TG2 conformation and inhibited transamidase activity in mesenteric arteries. In contrast to TG2 inhibitors promoting the open conformation (Z-DON, VA5), LDN 27219 concentration-dependently relaxed rat and resistance human arteries by a mechanism dependent on nitric oxide, large-conductance calcium-activated and voltage-gated potassium channels 7, lowering blood pressure. LDN 27219 also potentiated acetylcholine-induced relaxation by opening potassium channels in the smooth muscle; these effects were abolished by membrane-permeable TG2 inhibitors promoting the open conformation. In isolated arteries from 35- to 40-week-old rats, transamidase activity was increased, and LDN 27219 improved acetylcholine-induced relaxation more than in younger rats. Infusion of LDN 27219 decreased blood pressure more effectively in 35- to 40-week than 12- to 14-week-old anesthetized rats. In summary, pharmacological modulation of TG2 to the closed conformation age-dependently lowers blood pressure and, by opening potassium channels, potentiates endothelium-dependent vasorelaxation. Our findings suggest that promoting the closed conformation of TG2 is a potential strategy to treat age-related vascular dysfunction and lowers blood pressure.


1993 ◽  
Vol 75 (1) ◽  
pp. 364-372 ◽  
Author(s):  
R. J. Dandurand ◽  
C. G. Wang ◽  
N. C. Phillips ◽  
D. H. Eidelman

We used a modified adult lung explant technique to directly measure the area of individual airways before and after methacholine (MCh) administration. Lungs were removed from 12-wk-old male Lewis rats under sterile conditions, filled with an agarose-containing solution at 37 degrees C, and cooled to 4 degrees C. Transverse slices (0.5–1.0 mm thick) were cut and cultured overnight. Concentration-response curves to MCh were determined for explant airways from lungs inflated to 25, 50, 75, and 100% total lung capacity (TLC) with a 1.0% agarose solution and to 75% TLC with 0.5 and 2.0% agarose solutions. MCh was added to the medium to achieve final concentrations ranging from 10(-9) to 10(-2) M. Airways were imaged before and 10 min after each increase in MCh concentration with an inverted microscope and video camera, and airway area was determined by computerized image processing. The maximal response (MR) ([1-(minimal area/baseline area)] x 100) and concentration of MCh resulting in 50% MR (EC50) were determined. A total of 217 airways from 3–12 explants per rat constricted in a concentration-dependent manner. Baseline area was larger with both higher lung volumes and agarose concentrations. MR was greatest in the airways from the 25% TLC and 0.5% agarose explants. Although there was considerable heterogeneity toward MCh within rats (EC50 varied up to 5.46 x 10(5)-fold), the median EC50 was similar among all rats (range 1.96 x 10(-6)-5.87 x 10(-4) M). Lung inflation volume and agarose concentration affected baseline area and MR, suggesting that airway-parenchymal interdependence mechanisms are operative in this preparation.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 279 (3) ◽  
pp. H1434-H1439 ◽  
Author(s):  
Steffen-Sebastian Bolz ◽  
Susanne Pieperhoff ◽  
Cor De Wit ◽  
Ulrich Pohl

Long-term culture of resistance vessels allows introduction of molecular biology techniques for use in microvascular research. The aim of the present study was to establish a culture protocol that preserved vascular integrity and function in microvessels for 48 h in culture. Skeletal muscle resistance arteries were excised from the hamster gracilis muscle. Segments were assigned to immediate functional tests or to vessel culture, during which segments were perfused and superfused at a transmural pressure of 45 mmHg with Leibovitz (L15) medium containing 15% fetal calf serum and antibiotics for 48 h. Cultured and freshly isolated vessels showed similar levels of spontaneous tone, myogenic responses, changes in smooth muscle intracellular calcium (Cai 2+) (fura 2), and vascular diameter (video microscopy) in response to 0.3 M norepinephrine and similar concentration-response curves for acetylcholine (endothelium dependent, ± N ω-nitro-l-arginine) and sodium nitroprusside (endothelium independent). Measurements of endothelial Cai 2+ revealed similar acetylcholine-induced increases in endothelial Cai 2+ in both groups. It is concluded that vascular function can be preserved while maintaining vessels in culture. Thus it is possible to utilize protocols that require long-term treatment.


Sign in / Sign up

Export Citation Format

Share Document