scholarly journals Endothelial-to-Mesenchymal Transition and Inflammation Play Key Roles in Cyclophilin A–Induced Pulmonary Arterial Hypertension

Hypertension ◽  
2020 ◽  
Vol 76 (4) ◽  
pp. 1113-1123 ◽  
Author(s):  
Chao Xue ◽  
Sharon Senchanthisai ◽  
Mark Sowden ◽  
Jinjiang Pang ◽  
Jim White ◽  
...  

Oxidative stress and inflammation play key roles in development of pulmonary arterial hypertension (PAH). We previously reported that an endothelial cell (EC)-specific cyclophilin A overexpression mouse developed many characteristics of PAH. In other models of cardiovascular disease, cyclophilin A stimulates smooth muscle proliferation and vascular inflammation, but mechanisms responsible for PAH have not been defined. In particular, the contribution of endothelial-to-mesenchymal transition in cyclophilin A-mediated PAH has not been studied. We identified increased levels of cyclophilin A in endothelial and neointimal cells of pulmonary arteries in patients with PAH and animal pulmonary hypertension models. In the EC-specific cyclophilin A overexpression mouse that exhibited features characteristic of PAH, lineage tracing showed high level expression of mesenchymal markers in pulmonary ECs. A significant number of mesenchymal cells in media and perivascular regions of pulmonary arterioles and alveoli were derived from ECs. Pulmonary ECs isolated from these mice showed phenotypic changes characteristic of endothelial-to-mesenchymal transition in culture. Cultured pulmonary ECs stimulated with extracellular cyclophilin A and acetylated cyclophilin A demonstrated functional changes associated with endothelial-to-mesenchymal transition such as increased cytokine release, migration, proliferation, and mitochondrial dysfunction. Acetylated cyclophilin A stimulated greater increases for most features of endothelial-to-mesenchymal transition. In conclusion, extracellular cyclophilin A (especially acetylated form) contributes to PAH by mechanisms involving increased endothelial-to-mesenchymal transition, cytokine release, EC migration, proliferation, and mitochondrial dysfunction; strengthening the basis for studying cyclophilin A inhibition as a therapy for PAH.

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Chao Xue

Rationale: Pulmonary arterial hypertension (PAH) is a devastating disease in which oxidative stress has been proposed to mediate pathological changes to the pulmonary vasculature such as endothelial cell (EC) apoptosis, endothelial to mesenchymal transition (EndMT), vascular smooth muscle cell (VSMC) proliferation, and inflammation. Our previous study showed that cyclophilin A (CypA) was secreted from EC and VSMC in response to oxidative stress, and much of the secreted CypA was acetylated (AcK-CypA). Furthermore, CypA was increased in the plasma of patients with PAH. Objective: To evaluate the cell- s pecific role of CypA in PAH and compare the relative effects of AcK-CypA and CypA on EC apoptosis, development of an inflammatory EC phenotype and EndMT. Methods and Results: Transgenic overexpression of CypA in EC, but not SMC, caused a PAH phenotype including increased pulmonary artery pressure, α-smooth muscle actin expression in small arteries, and CD45 positive cells in the lungs. Mechanistic analysis using cultured mouse lung microvascular EC showed that CypA and AcK-CypA increased apoptosis measured by caspase 3 cleavage and TUNEL staining. MM284, a specific inhibitor of extracellular CypA, prevented EC apoptosis. In addition, CypA and AcK-CypA promoted an EC inflammatory phenotype assessed by increased VCAM1 and ICAM1 expression, phosphorylation of p65, and degradation of IkB. Furthermore, CypA and AcK-CypA promoted EndMT assayed by change in cell morphology, increased mesenchymal markers and EndMT related transcription factors. At all concentrations, AcK-CypA stimulated greater increases in apoptosis, inflammation and EndMT than CypA. Conclusions: EC-derived CypA (especially AcK-CypA) causes PAH by a presumptive mechanism involving increased EC apoptosis, inflammation and EndMT. Our results suggest that inhibiting extracellular secreted CypA is a novel therapeutic approach for PAH.


2015 ◽  
Vol 185 (7) ◽  
pp. 1850-1858 ◽  
Author(s):  
Robert B. Good ◽  
Adrian J. Gilbane ◽  
Sarah L. Trinder ◽  
Christopher P. Denton ◽  
Gerry Coghlan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document