Abstract 382: Cyclophilin A (CypA) is a Pathogenic Mediator of Pulmonary Arterial Hypertension

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Chao Xue

Rationale: Pulmonary arterial hypertension (PAH) is a devastating disease in which oxidative stress has been proposed to mediate pathological changes to the pulmonary vasculature such as endothelial cell (EC) apoptosis, endothelial to mesenchymal transition (EndMT), vascular smooth muscle cell (VSMC) proliferation, and inflammation. Our previous study showed that cyclophilin A (CypA) was secreted from EC and VSMC in response to oxidative stress, and much of the secreted CypA was acetylated (AcK-CypA). Furthermore, CypA was increased in the plasma of patients with PAH. Objective: To evaluate the cell- s pecific role of CypA in PAH and compare the relative effects of AcK-CypA and CypA on EC apoptosis, development of an inflammatory EC phenotype and EndMT. Methods and Results: Transgenic overexpression of CypA in EC, but not SMC, caused a PAH phenotype including increased pulmonary artery pressure, α-smooth muscle actin expression in small arteries, and CD45 positive cells in the lungs. Mechanistic analysis using cultured mouse lung microvascular EC showed that CypA and AcK-CypA increased apoptosis measured by caspase 3 cleavage and TUNEL staining. MM284, a specific inhibitor of extracellular CypA, prevented EC apoptosis. In addition, CypA and AcK-CypA promoted an EC inflammatory phenotype assessed by increased VCAM1 and ICAM1 expression, phosphorylation of p65, and degradation of IkB. Furthermore, CypA and AcK-CypA promoted EndMT assayed by change in cell morphology, increased mesenchymal markers and EndMT related transcription factors. At all concentrations, AcK-CypA stimulated greater increases in apoptosis, inflammation and EndMT than CypA. Conclusions: EC-derived CypA (especially AcK-CypA) causes PAH by a presumptive mechanism involving increased EC apoptosis, inflammation and EndMT. Our results suggest that inhibiting extracellular secreted CypA is a novel therapeutic approach for PAH.

Author(s):  
Thibault R. H. Jouen-Tachoire ◽  
Stephen J. Tucker ◽  
Paolo Tammaro

Pulmonary arterial hypertension (PAH) is a fatal disease of the cardiopulmonary system that lacks curative treatments. The main pathological event in PAH is elevated vascular resistance in the pulmonary circulation, caused by abnormal vasoconstriction and vascular remodelling. Ion channels are key determinants of vascular smooth muscle tone and homeostasis, and four PAH channelopathies (KCNK3, ABCC8, KCNA5, TRPC6) have been identified so far. However, the contribution of ion channels in other forms of PAH, which account for the majority of PAH patients, has been less well characterised. Here we reason that a variety of triggers of PAH (e.g. BMPR2 mutations, hypoxia, anorectic drugs) that impact channel function may contribute to the onset of the disease. We review the molecular mechanisms by which these ‘extrinsic’ factors converge on ion channels and provoke their dysregulation to promote the development of PAH. Ion channels of the pulmonary vasculature are therefore promising therapeutic targets because of the modulation they provide to both vasomotor tone and proliferation of arterial smooth muscle cells.


2018 ◽  
Vol 314 (1) ◽  
pp. L118-L126 ◽  
Author(s):  
Toshio Suzuki ◽  
Erica J. Carrier ◽  
Megha H. Talati ◽  
Anandharajan Rathinasabapathy ◽  
Xinping Chen ◽  
...  

Endothelial-to-mesenchymal transition (EndMT) is a process in which endothelial cells lose polarity and cell-to cell contacts, and undergo a dramatic remodeling of the cytoskeleton. It has been implicated in initiation and progression of pulmonary arterial hypertension (PAH). However, the characteristics of cells which have undergone EndMT cells in vivo have not been reported and so remain unclear. To study this, sugen5416 and hypoxia (SuHx)-induced PAH was established in Cdh5-Cre/Gt(ROSA)26Sortm4(ACTB-tdTomato,EGFP)Luo/J double transgenic mice, in which GFP was stably expressed in pan-endothelial cells. After 3 wk of SuHx, flow cytometry and immunohistochemistry demonstrated CD144-negative and GFP-positive cells (complete EndMT cells) possessed higher proliferative and migratory activity compared with other mesenchymal cells. While CD144-positive and α-smooth muscle actin (α-SMA)-positive cells (partial EndMT cells) continued to express endothelial progenitor cell markers, complete EndMT cells were Sca-1-rich mesenchymal cells with high proliferative and migratory ability. When transferred in fibronectin-coated chamber slides containing smooth muscle media, α-SMA robustly expressed in these cells compared with cEndMT cells that were grown in maintenance media. Demonstrating additional paracrine effects, conditioned medium from isolated complete EndMT cells induced enhanced mesenchymal proliferation and migration and increased angiogenesis compared with conditioned medium from resident mesenchymal cells. Overall, these findings show that EndMT cells could contribute to the pathogenesis of PAH both directly, by transformation into smooth muscle-like cells with higher proliferative and migratory potency, and indirectly, through paracrine effects on vascular intimal and medial proliferation.


2021 ◽  
Vol 41 (3) ◽  
pp. 1205-1217 ◽  
Author(s):  
Ryo Kurosawa ◽  
Kimio Satoh ◽  
Takashi Nakata ◽  
Tomohiko Shindo ◽  
Nobuhiro Kikuchi ◽  
...  

Objective: Pulmonary arterial hypertension is characterized by abnormal proliferation of pulmonary artery smooth muscle cells and vascular remodeling, which leads to right ventricular (RV) failure. Bsg (Basigin) is a transmembrane glycoprotein that promotes myofibroblast differentiation, cell proliferation, and matrix metalloproteinase activation. CyPA (cyclophilin A) binds to its receptor Bsg and promotes pulmonary artery smooth muscle cell proliferation and inflammatory cell recruitment. We previously reported that Bsg promotes cardiac fibrosis and failure in the left ventricle in response to pressure-overload in mice. However, the roles of Bsg and CyPA in RV failure remain to be elucidated. Approach and Results: First, we found that protein levels of Bsg and CyPA were upregulated in the heart of hypoxia-induced pulmonary hypertension (PH) in mice and monocrotaline-induced PH in rats. Furthermore, cardiomyocyte-specific Bsg-overexpressing mice showed exacerbated RV hypertrophy, fibrosis, and dysfunction compared with their littermates under chronic hypoxia and pulmonary artery banding. Treatment with celastrol, which we identified as a suppressor of Bsg and CyPA by drug screening, decreased proliferation, reactive oxygen species, and inflammatory cytokines in pulmonary artery smooth muscle cells. Furthermore, celastrol treatment ameliorated RV systolic pressure, hypertrophy, fibrosis, and dysfunction in hypoxia-induced PH in mice and SU5416/hypoxia-induced PH in rats with reduced Bsg, CyPA, and inflammatory cytokines in the hearts and lungs. Conclusions: These results indicate that elevated Bsg in pressure-overloaded RV exacerbates RV dysfunction and that celastrol ameliorates RV dysfunction in PH model animals by suppressing Bsg and its ligand CyPA. Thus, celastrol can be a novel drug for PH and RV failure that targets Bsg and CyPA. Graphic Abstract: A graphic abstract is available for this article.


2018 ◽  
Vol 25 (11) ◽  
pp. 1340-1351 ◽  
Author(s):  
Adriane Bello-Klein ◽  
Daniele Mancardi ◽  
Alex S. Araujo ◽  
Paulo C. Schenkel ◽  
Patrick Turck ◽  
...  

This review addresses pulmonary arterial hypertension (PAH), an incurable disease, which determines high morbidity and mortality. Definition of the disease, its characteristics, classification, and epidemiology are discussed. A difficulty in the diagnosis of PAH due to the lack of symptoms specificity is highlighted. Echocardiographic analysis and electrocardiogram of patients help in the diagnosis and in the follow up of the disease. Nevertheless, right ventricle (RV) catheterization constitutes the gold standard for diagnosing PAH. Oxidative stress and inflammation, in an interactive manner, play a major role in the development of pulmonary vascular remodeling and consequent increase of pulmonary pressure. The latter results in an increase in RV afterload, culminating with RV hypertrophy, which may progress to failure. Both clinical and experimental studies have shown increased oxidative stress and inflammation, not only in lungs and pulmonary vasculature but also in RV. The use of experimental models, such as the monocrotaline-induced PAH, has helped in the understanding of the pathophysiology of PAH, as well as in the development of new therapeutic strategies. In addition to the traditional therapeutics, the use of therapeutic interventions capable of modulating oxidative stress and inflammation may offer newer strategies in the prevention as well as management of this disease.


Hypertension ◽  
2020 ◽  
Vol 76 (4) ◽  
pp. 1113-1123 ◽  
Author(s):  
Chao Xue ◽  
Sharon Senchanthisai ◽  
Mark Sowden ◽  
Jinjiang Pang ◽  
Jim White ◽  
...  

Oxidative stress and inflammation play key roles in development of pulmonary arterial hypertension (PAH). We previously reported that an endothelial cell (EC)-specific cyclophilin A overexpression mouse developed many characteristics of PAH. In other models of cardiovascular disease, cyclophilin A stimulates smooth muscle proliferation and vascular inflammation, but mechanisms responsible for PAH have not been defined. In particular, the contribution of endothelial-to-mesenchymal transition in cyclophilin A-mediated PAH has not been studied. We identified increased levels of cyclophilin A in endothelial and neointimal cells of pulmonary arteries in patients with PAH and animal pulmonary hypertension models. In the EC-specific cyclophilin A overexpression mouse that exhibited features characteristic of PAH, lineage tracing showed high level expression of mesenchymal markers in pulmonary ECs. A significant number of mesenchymal cells in media and perivascular regions of pulmonary arterioles and alveoli were derived from ECs. Pulmonary ECs isolated from these mice showed phenotypic changes characteristic of endothelial-to-mesenchymal transition in culture. Cultured pulmonary ECs stimulated with extracellular cyclophilin A and acetylated cyclophilin A demonstrated functional changes associated with endothelial-to-mesenchymal transition such as increased cytokine release, migration, proliferation, and mitochondrial dysfunction. Acetylated cyclophilin A stimulated greater increases for most features of endothelial-to-mesenchymal transition. In conclusion, extracellular cyclophilin A (especially acetylated form) contributes to PAH by mechanisms involving increased endothelial-to-mesenchymal transition, cytokine release, EC migration, proliferation, and mitochondrial dysfunction; strengthening the basis for studying cyclophilin A inhibition as a therapy for PAH.


2019 ◽  
Author(s):  
Takeo Tsutsumi ◽  
Tetsutaro Nagaoka ◽  
Takashi Yoshida ◽  
Lei Wang ◽  
Sachiko Kuriyama ◽  
...  

AbstractNeointimal lesion and medial wall thickness of pulmonary arteries (PAs) are common pathological findings in pulmonary arterial hypertension (PAH). Platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) signaling contribute to intimal and medial vascular remodeling in PAH. Nintedanib is a tyrosine kinase inhibitor whose targets include PDGF and FGF receptors. Although the beneficial effects of nintedanib were demonstrated for human idiopathic pulmonary fibrosis, its efficacy for PAH is still unclear. Thus, we hypothesized that nintedanib is a novel treatment for PAH to inhibit the progression of vascular remodeling in PAs. The inhibitory effects of nintedanib were evaluated both in endothelial mesenchymal transition (EndMT)-induced human pulmonary microvascular endothelial cells (HPMVECs) and human pulmonary arterial smooth muscle cells (HPASMCs) stimulated by growth factors. We also tested the effect of chronic nintedanib administration on a PAH rat model induced by Sugen5416 (a VEGF receptor inhibitor) combined with chronic hypoxia. Nintedanib was administered from weeks 3 to 5 after Sugen5416 injection, and pulmonary hemodynamics and PAs pathology were evaluated. Nintedanib attenuated the expression of mesenchymal markers in EndMT-induced HPMVECs and HPASMCs proliferation. Phosphorylation of PDGF and FGF receptors was augmented both in both intimal and medial lesions of PAs. Nintedanib blocked these phosphorylation, improved hemodynamics and reduced vascular remodeling involving neointimal lesions and medial wall thickening in PAs. Additionally, expressions Twist1, transcription factors associated with EndMT, in lung tissue was significantly reduced by nintedanib. These results suggest that nintedanib may be a novel treatment for PAH with anti-vascular remodeling effects.


Sign in / Sign up

Export Citation Format

Share Document