scholarly journals Monocrotaline Induces Endothelial Injury and Pulmonary Hypertension by Targeting the Extracellular Calcium–Sensing Receptor

Author(s):  
Rui Xiao ◽  
Yuan Su ◽  
Tian Feng ◽  
Mengxiang Sun ◽  
Bingxun Liu ◽  
...  
Author(s):  
Rui Xiao ◽  
Shengquan Luo ◽  
Ting Zhang ◽  
Yankai Lv ◽  
Tao Wang ◽  
...  

Activation of the CaSR (extracellular calcium-sensing receptor) has been recognized as a critical mediator of hypoxia-induced pulmonary hypertension. Preventive targeting of the early initiating phase as well as downstream events after CaSR activation remains unexplored. As a representative of the G protein-coupled receptor family, CaSR polymerizes on cell surface upon stimulation. Immunoblotting together with MAL-PEG technique identified a reactive oxygen species-sensitive CaSR polymerization through its extracellular domain in pulmonary artery smooth muscle cells upon exposure to acute hypoxia. Fluorescence resonance energy transfer screening employing blocking peptides determined that cycteine129/131 residues in the extracellular domain of CaSR formed intermolecular disulfide bonds to promote CaSR polymerization. The monitoring of intracellular Ca 2+ signal highlighted the pivotal role of CaSR polymerization in its activation. In contrast, the blockade of disulfide bonds formation using a peptide decreased both CaSR and hypoxia-induced mitogenic factor expression as well as other hypoxic-related genes in vitro and in vivo and attenuated pulmonary hypertension development in rats. The blocking peptide did not affect systemic arterial oxygenation in vivo but inhibited acute hypoxia-induced pulmonary vasoconstriction. Pharmacokinetic analyses revealed a more efficient lung delivery of peptide by inhaled nebulizer compared to intravenous injection. In addition, the blocking peptide did not affect systemic arterial pressure, body weight, left ventricular function, liver, or kidney function or plasma Ca 2+ level. In conclusion, a peptide blocking CaSR polymerization reduces its hypoxia-induced activation and downstream events leading to pulmonary hypertension and represents an attractive inhaled preventive alternative worthy of further development.


Sign in / Sign up

Export Citation Format

Share Document