Abstract P295: The Inflammasome Is Involved in Myocardial Ischemia-Reperfusion Injury

2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Masafumi Takahashi ◽  
Masanori Kawaguchi ◽  
Fumitake Usui ◽  
Hiroaki Kimura ◽  
Shun'ichiro Taniguchi ◽  
...  

Background: Accumulating evidence indicates that inflammation is involved in the pathophysiology of myocardial ischemia-reperfusion (I/R) injury. However, the mechanism of I/R-initiated inflammation remains to be determined. The inflammasome is a multiprotein complex consisting of nod-like receptor (NLR), apoptosis-associated speck-like adaptor protein (ASC), and caspase-1, and regulates caspase-1-dependent maturation of IL-1beta and IL-18. In the present study, we investigated the role of inflammasome in myocardial I/R injury. Methods and Results: Wild-type (WT), ASC−/−, and caspase-1−/− mice were subjected to 30 min LAD ligation, followed by reperfusion. ASC and caspase-1 were expressed at the site of myocardial I/R injury. Deficiency of ASC and caspase-1 reduced inflammatory responses, such as inflammatory cell infiltration and cytokine expression, and subsequent injuries such as infarct development, myocardial fibrosis, and dysfunction in myocardial I/R injury. To determine the contribution of inflammasome in bone marrow cells, we produced bone marrow transplant mice and found that inflammasome activation was critical not only in bone marrow cells but also in myocardial resident cells. Since myocardial damage was observed before the inflammatory cell infiltration after I/R, we hypothesized that myocardial resident cells are responsible for an initial activation of inflammasome. To test this hypothesis, we examined whether hypoxia/reoxygenation (H/R) stimuli could induce inflammasome activation in cardiac fibroblasts and cardiomyocytes in vitro. Interestingly, inflammasome activation was detected only in cardiac fibroblasts, but not in cardiomyocytes, and mediated through reactive oxygen species (ROS) and potassium efflux. Conclusion: These findings indicate that inflammasome activation in cardiac fibroblasts is essential for inflammation and injury after myocardial I/R, and suggest that the inflammasome is a potential novel therapeutic target for myocardial I/R injury.

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Yi Liu ◽  
Lijian Zhang ◽  
Yan Qu ◽  
Chao Gao ◽  
Jingyi Liu ◽  
...  

As an inhibitor of the antioxidant thioredoxin, thioredoxin-interacting protein (Txnip) is linked to insulin resistance. NLRP3 inflammasome, a major regulator of innate immunity, has been reported to be activated by Txnip, thus contributing to the pathogenesis of type 2 diabetes mellitus. However, the role of Txnip and its NLRP3 inflammasome activation in the myocardial ischemia/reperfusion (MI/R) injury has not been previously investigated. C57BL/6J mice were subjected to 30 min of ischemia and 3 or 24 hrs of reperfusion. The ischemic heart exhibited increased Txnip and NLRP3 expressions, increased interaction between Txnip and NLRP3 (by immunoprecipitation, 1.8-fold increase over sham), and increased IL-1β, IL-18 and caspase-1 expressions (%increase: 80%, 77% and 110%, respectively) (n=8, all P <0.05). Compared with vehicle group, those mice either receiving intramyocardial small-interfering RNA (siRNA) injection to specifically knockdown the myocardial NLRP3 or intraperitoneal injection of the inflammasome inhibitor (BAY 11-7082) exhibited significantly improved cardiac function (by 28% and 25%), decreased the infarct size (by 40% and 38%), and decreased the cardiomyocytes apoptosis (all P <0.05). NLRP3 knockdown or inflammasome inhibitor also decreased the inflammatory cells infiltration (macrophages and neutrophils) and cytokines (TNF-α, INF-γ and IL-6) production (all P <0.05). To elucidate the role of Txnip in the NLRP3 activation in MI/R, intramyocardial injection of Txnip siRNA was performed to specifically knockdown the myocardial Txnip expression. Compared with vehicle, the Txnip knockdown significantly decreased Txnip/NLRP3 interaction and NLRP3activation as evidenced by lower expressions of IL-1β and caspase-1, decreased inflammatory cells infiltration and cytokines expressions, and consequently decreased the myocardial infarct size and increased the heart function (all P <0.05). Collectively, we demonstrated for the first time that Txnip mediatedNLRP3 inflammasome activation is a novel mechanism of MI/R injury. Interventions targeted to blocking the activation of NLRP3 by inhibiting Txnip may have therapeutic potential for preventing MI/R injury.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Guixi Mo ◽  
Xin Liu ◽  
Yiyue Zhong ◽  
Jian Mo ◽  
Zhiyi Li ◽  
...  

AbstractIntracellular ion channel inositol 1,4,5-triphosphate receptor (IP3R1) releases Ca2+ from endoplasmic reticulum. The disturbance of IP3R1 is related to several neurodegenerative diseases. This study investigated the mechanism of IP3R1 in myocardial ischemia/reperfusion (MI/R). After MI/R modeling, IP3R1 expression was silenced in myocardium of MI/R rats to explore its role in the concentration of myocardial enzymes, infarct area, Ca2+ level, NLRP3/Caspase-1, and pyroptosis markers and inflammatory factors. The adult rat cardiomyocytes were isolated and cultured to establish hypoxia/reperfusion (H/R) cell model. The expression of IP3R1 was downregulated or ERP44 was overexpressed in H/R-induced cells. Nifedipine D6 was added to H/R-induced cells to block Ca2+ channel or Nigericin was added to activate NLRP3. IP3R1 was highly expressed in myocardium of MI/R rats, and silencing IP3R1 alleviated MI/R injury, reduced Ca2+ overload, inflammation and pyroptosis in MI/R rats, and H/R-induced cells. The binding of ERP44 to IP3R1 inhibited Ca2+ overload, alleviated cardiomyocyte inflammation, and pyroptosis. The increase of intracellular Ca2+ level caused H/R-induced cardiomyocyte pyroptosis through the NLRP3/Caspase-1 pathway. Activation of NLRP3 pathway reversed the protection of IP3R1 inhibition/ERP44 overexpression/Nifedipine D6 on H/R-induced cells. Overall, ERP44 binding to IP3R1 inhibits Ca2+ overload, thus alleviating pyroptosis and MI/R injury.


2020 ◽  
Vol 19 (5) ◽  
pp. 1031-1036
Author(s):  
Guixiang Zhao ◽  
Xiaoyun Ma ◽  
Juledezi Hailati ◽  
Zhen Bao ◽  
Maerjiaen Bakeyi ◽  
...  

Purpose: To determine the involvement of NLRP3 signaling pathway in the preventive role of daucosterol in acute myocardial infarction (AMI).Methods: H9C2 cells were pretreated with daucosterol before hypoxia/reoxygenation (HR) injury. Myocardial ischemia reperfusion (IR) was established in male SD rats, followed by reperfusion. Myocardial infarct size was measured. The serum levels of creatine kinase (CK), lactate  dehydrogenase (LDH), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were determined using commercial kits. NLRP3 inflammasome activation was assessed by western blotting.Results: Myocardial infarct size was smaller after IR injury in rats pretreated with daucosterol (10 and 50 mg/kg) than that pretreated with daucosterol (0 and 1 mg/kg). The increase in LDH, CK, and MDA levels after IR injury was reduced following daucosterol pretreatment. Reactive oxygen species (ROS) production increased, whereas T-SOD activity decreased after IR injury. These changes were prevented by pretreatment of daucosterol (10 and 50 mg/kg). Protein expression of NLRP3 inflammasome increased after IR injury in H9C2 cells while pretreatment with daucosterol inhibited the upregulation of NLRP3 inflammasome.Conclusion: The cardioprotective effect of daucosterol pretreatment appears to be mediated via the inactivation of ROS-related NLRP3 inflammasome, suggesting that daucosteol might be a potential therapeutic drug for AMI. Keywords: Daucosterol, Myocardial ischemia, Reperfusion injury, Reactive oxygen species, NLRP3 inflammasome


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiaxuan Wu ◽  
Wenfeng Cai ◽  
Ruiming Du ◽  
Haiyang Li ◽  
Bin Wang ◽  
...  

Myocardial ischemia is common in aging population. This study investigates the protective effect of Sevoflurane on myocardial ischemia reperfusion injury (MIRI) and its underlying mechanism. A total of 87 patients with a history of myocardial ischemia who underwent abdominal surgery with Sevoflurane general anesthesia were recruited in the study. The clinical data, blood pressure, heart rate, pressure-rate quotient (PRQ) and rate-pressure product (RPP) were recorded. Serum samples were collected and heart-type fatty acid binding protein (H-FABP), ischemia modified albumin (IMA), interleukin-1β (IL-1β), and interleukin-18 (IL-18) were measured to observe whether Sevoflurane anesthesia had protective effect on myocardium. In addition, MIRI rats and hypoxia/reoxygenation (H/R) injury cell model was established using neonatal rat ventricular myocytes (NRVM). Rats or NRVM were pretreated with sevoflurane for 45min before hypoxia. The mRNA expression of purinergic receptor-7 (P2X7) and NLR family pyrin domain containing 3(NLRP3) were examined. The protein expression of P2X7, NLRP3, apoptosis-associated speck-like protein (ASC), cysteine aspartic acid specific protease-1(Caspase-1), Gasdermin-D (GSDMD), Bcl-2 Associated X Protein (Bax), B-cell lymphoma-2 (Bcl-2) in myocardial tissue and cells were evaluated. The serum contents of IL-1β, IL-18, Malondialdehyde (MDA), Superoxide dismutase (SOD), Lactate dehydrogenase (LDH), Creatine kinase (CK), and Creatine kinase isoenzymes (CK-MB) were measured. The cellular localization and fluorescence intensity of NLRP3 and ASC in cells were detected. It was found that the secretion of IL-1β and IL-18 decreased in the patients. After I45 min/R3h in SD rats and H3h/R1h in NRVM, the protein expressions of P2X7, NLRP3, ASC, Caspase-1 and GSDMD were increased, the release of IL-1β, IL-18, CK, CK-MB, LDH and MDA were increased, and SOD activity was decreased. Sevoflurane treatment inhibited the high expression of P2X7, NLRP3, ASC, Caspase-1 and GSDMD, inhibited the release of LDH, CK,CK-MB and MDA in cells, and improved the activity of SOD, indicating that Sevoflurane alleviated the damage of MIRI of rats and H/R of NRVM, and had myocardial protective effect. Taken together, our study suggests that Sevoflurane inhibited the expression of IL-1β, IL-18 and GSDMD by inhibiting the P2X7-NLRP3 signaling pathway. It reduced the H/R injury of cardiomyocytes and protected the cardiac function by regulating inflammatory reaction and pyroptosis.


Sign in / Sign up

Export Citation Format

Share Document