inflammatory cell infiltration
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 76)

H-INDEX

32
(FIVE YEARS 4)

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Xuechun Sun ◽  
Xiaodan Sun ◽  
Huali Meng ◽  
Junduo Wu ◽  
Xin Guo ◽  
...  

Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM), resulting in high mortality. Myocardial fibrosis, cardiomyocyte apoptosis and inflammatory cell infiltration are hallmarks of DCM, leading to cardiac dysfunction. To date, few effective approaches have been developed for the intervention of DCM. In the present study, we investigate the effect of krill oil (KO) on the prevention of DCM using a mouse model of DM induced by streptozotocin and a high-fat diet. The diabetic mice developed pathological features, including cardiac fibrosis, apoptosis and inflammatory cell infiltration, the effects of which were remarkably prevented by KO. Mechanistically, KO reversed the DM-induced cardiac expression of profibrotic and proinflammatory genes and attenuated DM-enhanced cardiac oxidative stress. Notably, KO exhibited a potent inhibitory effect on NLR family pyrin domain containing 3 (NLRP3) inflammasome that plays an important role in DCM. Further investigation showed that KO significantly upregulated the expression of Sirtuin 3 (SIRT3) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which are negative regulators of NLRP3. The present study reports for the first time the preventive effect of KO on the pathological injuries of DCM, providing SIRT3, PGC-1α and NLRP3 as molecular targets of KO. This work suggests that KO supplementation may be a viable approach in clinical prevention of DCM.


2021 ◽  
Vol 22 (24) ◽  
pp. 13678
Author(s):  
Giovanna Castoldi ◽  
Raffaella Carletti ◽  
Silvia Ippolito ◽  
Andrea Stella ◽  
Gianpaolo Zerbini ◽  
...  

Compound 21 (C21), an AT2 receptor agonist, and Angiotensin 1-7 (Ang 1-7), through Mas receptor, play an important role in the modulation of the protective arm of the renin-angiotensin system. The aim of this study was to investigate in an experimental model of angiotensin II-dependent hypertension whether the activation of the potentially protective arm of the renin-angiotensin system, through AT2 or Mas receptor stimulation, counteracts the onset of myocardial fibrosis and hypertrophy, and whether these effects are mediated by inflammatory mechanism and/or sympathetic activation. Sprague Dawley rats (n = 67) were treated for 1 (n = 25) and 4 (n = 42) weeks and divided in the following groups: (a) Angiotensin II (Ang II, 200 ng/kg/min, osmotic minipumps, sub cutis); (b) Ang II+Compound 21 (C21, 0.3 mg/kg/day, intraperitoneal); (c) Ang II+Ang 1-7 (576 µg/kg/day, intraperitoneal); (d) Ang II+Losartan (50 mg/kg/day, per os); (e) control group (physiological saline, sub cutis). Systolic blood pressure was measured by tail cuff method and, at the end of the experimental period, the rats were euthanized and the heart was excised to evaluate myocardial fibrosis, hypertrophy, inflammatory cell infiltration and tyrosine hydroxylase expression, used as marker of sympathetic activity. Ang II caused a significant increase of blood pressure, myocardial interstitial and perivascular fibrosis and myocardial hypertrophy, as compared to control groups. C21 or Ang 1-7 administration did not modify the increase in blood pressure in Ang II treated rats, but both prevented the development of myocardial fibrosis and hypertrophy. Treatment with losartan blocked the onset of hypertension and myocardial fibrosis and hypertrophy in Ang II treated rats. Activation of AT2 receptors or Mas receptors prevents the onset of myocardial fibrosis and hypertrophy in Ang II-dependent hypertension through the reduction of myocardial inflammatory cell infiltration and tyrosine hydroxylase expression. Unlike what happens in case of treatment with losartan, the antifibrotic and antihypertrophic effects that follow the activation of the AT2 or Mas receptors are independent on the modulation of blood pressure.


2021 ◽  
Vol 31 (3) ◽  
pp. 0-0
Author(s):  
Jolanta Kiewisz ◽  
Anna Pawlowska ◽  
Agata Winiarska ◽  
Agnieszka Perkowska-Ptasinska ◽  
Agnieszka Skowrońska ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jinshuai Lu ◽  
Fen Liu ◽  
Xia Yu ◽  
Likun Xu ◽  
Lingling Zhang

Objective. To observe the effect of nicorandil on septic rats and explore the possible mechanism of its myocardial protection, so as to provide theoretical basis for the treatment of septic cardiomyopathy. Methods. Sixty male clean SD rats were selected as the research objects and randomly divided into 3 groups by random number method: sham operation group (sham group), cecal ligation and perforation group (CLP group), nicorandil treatment group (nicorandil+CLP group). After the operation, the nicorandil group was pumped with nicorandil diluent 1 ml/h (2 mg/kg/h) with a micropump for 6 hours. The sham group and CLP group were pumped with the same amount of normal saline 1 ml/h for a total of 6 hours. After 24 hours, the survival of the rats in each group was observed. The expression of troponin I (cTnI), tumor necrosis factor α (TNF-α), and interleukin-1β (IL-1β) in the serum was detected. Then, the ventricle was harvested for the observation of the pathological changes of myocardium. Quantitative real-time polymerase chain reaction and immunostaining were used to detect myocardial tissue apoptosis, and Western blot methods were used to detect protein expression changes in nuclear factor-κB (NF-κB) pathways. Results. 24 hours after operation, the survival rate of the rats in the CLP group was 60%. There was a large amount of necrosis of myocardial cells and inflammatory cell infiltration. The survival rate of rats in the nicorandil+CLP group was 75%. Compared with the CLP group, the necrosis of myocardial cells was reduced, and there was still a small amount of inflammatory cell infiltration. In the CLP group, myocardial inflammation and apoptosis were significant, and NF-κB pathway was activated. On the contrary, the NF-κB pathway in the nicorandil+CLP group was inhibited, and the expression of inflammatory factors and apoptosis factors was inhibited. Conclusion. Nicorandil can reduce the release of inflammatory factors in septic rats, improve the inflammatory response, reduce myocardial damage, and play a myocardial protective effect. Its mechanism may be related to the inhibition of the activation of NF-κB signaling pathway.


Author(s):  
Xi Ming ◽  
Xingzhu Yu ◽  
Jijun Li ◽  
Junyu Wang ◽  
Jialin Zheng ◽  
...  

<b><i>Introduction:</i></b> Salidroside (Sal) a bioactive component extracted from <i>Rhodiola rosea</i> is remarkable for its anti-asthmatic effects. The study aimed to explore the molecular mechanism of Sal in airway inflammation and remodeling in asthmatic mice and provide a novel theoretical basis for asthma treatment. <b><i>Methods:</i></b> An asthmatic mouse model was established via ovalbumin (OVA) treatment, followed by injection of Sal and transfection of miR-323-3p-mimic and sh- suppressor of cytokine signaling 5 (SOCS5). Expressions of miR-323-3p, SOCS5 mRNA, collagen (COL)-I, and COL-III were detected via reverse transcription quantitative polymerase chain reaction. SOCS5 protein level was detected via Western blot. Levels of IgE, IL-13, IL-4, and IL-5 were detected via enzyme-linked immunosorbent assay. Inflammatory cell infiltration was observed via hematoxylin-eosin staining. Collagen disposition was observed via Masson staining. Resistance index (RI) of airway hyperresponsiveness, and the number of total cells, inflammatory cells (eosinophil, macrophage, neutrophil, and lymphocyte) in bronchoalveolar lavage fluid (BALF) were observed. The binding relationship between miR-323-3p and SOCS5 was predicted through the RNA22 website and verified via dual-luciferase reporter assay. <b><i>Results:</i></b> miR-323-3p was highly expressed in OVA-treated mice. Sal treatment reduced inflammatory cell infiltration, COL disposition, miR-323-3p expression, and IgE, IL-13, IL-4, IL-5, COL-I, and COL-III levels, RI value, and the number of total cells and inflammatory cells in BALF. miR-323-3p inhibited SOCS5 transcription. miR-323-3p overexpression or SOCS5 downregulation reversed the protecting role of Sal in asthmatic mice. <b><i>Conclusion:</i></b> Sal inhibited miR-323-3p expression to promote SOCS5 transcription, thereby attenuating airway inflammation and remodeling in asthmatic mice.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingru Wang ◽  
Shengnan Gao ◽  
Jingyuan Zhang ◽  
Chunxiao Li ◽  
Hongwen Li ◽  
...  

Abstract Background Allergic asthma is a chronic airway inflammatory disease with a number of cytokines participating in its pathogenesis and progress. Interleukin (IL)-22, which is derived from lymphocytes, acts on epithelial cells and play a role in the chronic airway inflammation. However, the actual role of IL-22 in allergic asthma is still unclear. Therefore, we explored the effect of IL-22 on allergic airway inflammation and airway hyperresponsiveness (AHR) in an ovalbumin (OVA)-induced asthma mouse model. Methods To evaluate the effect of IL-22 in an allergic asthma model, BALB/c mice were sensitized and challenged with OVA; then the recombinant mouse IL-22 was administered intranasally 24 h prior to each challenge. The IL-22 levels in lung homogenates and bronchoalveolar lavage fluid (BALF) were measured by enzyme linked immunosorbent assay, respectively. AHR was evaluated through indicators including airways resistance (Rrs), elastance (Ers) and compliance (Crs); the inflammatory cell infiltration was assessed by quantification of differential cells counts in BALF and lung tissues stained by hematoxylin and eosin (H&E); IL-22 specific receptors were determined by immunohistochemistry staining. Results The concentration of IL-22 was significantly elevated in the OVA-induced mice compared with the control mice in lung homogenates and BALF. In the OVA-induced mouse model, IL-22 administration could significantly attenuate AHR, including Rrs, Ers and Crs, decrease the proportion of eosinophils in BALF and reduce inflammatory cell infiltration around bronchi and their concomitant vessels, compared with the OVA-induced group. In addition, the expression of IL-22RA1 and IL-10RB in the lung tissues of OVA-induced mice was significantly increased compared with the control mice, while it was dramatically decreased after the treatment with IL-22, but not completely attenuated in the IL-22-treated mice when compared with the control mice. Conclusion Interleukin-22 could play a protective role in an OVA-induced asthma model, by suppressing the inflammatory cell infiltration around bronchi and their concomitant vessels and airway hyperresponsiveness, which might associate with the expression of its heterodimer receptors. Thus, IL-22 administration might be an effective strategy to attenuate allergic airway inflammation.


Author(s):  
Başak Büyük ◽  
Cemre Aydeğer ◽  
Yasemen Adalı ◽  
Hüseyin Avni Eroğlu

Background: Wound healing has a vital importance for the organism and various agents are used to accelerate wound healing. Although the effect of boron on wound healing is known, its mechanisms are not completely clear yet. In this study, the effect of boron in the Ephrin /Eph pathway will be evaluated. Methods: Forty adult female rats were used in the study. A full-thickness excisional wound model was created in all groups divided as Control, Fito, Boron and Plu groups. After the applications performed twice a day and lasting 7 days, skin tissues obtained and evaluated histopathological (inflammatory cell infiltration, oedema, and fibroblast proliferation density) and immunohistochemical (TNF-α, EphrinA1, EphrinB1, EphrinB2 and EphB4). Results: Inflammatory cell infiltration score was found to be higher in the Fito group compared to Boron group (p = .018). Fibroblast proliferation density was higher in Plu group than Boron group (p = .012). While TNF-α was lower in boron group than Plu (p = .027) and Fito (p = .016) groups, EphrinA1 was higher in Boron group than Plu group (p = .005). EphrinB1 expression was higher in Boron group compared to Plu (p = .015) and Fito (p = .015) groups, and the same difference was also observed in EphrinB2 (p values .000). Similarly, EphB4 immunoreactivity was higher in the Boron group compared to Plu (p = .000) and Fito (p = .002). Conclusion: One of the mechanisms of action of boron in wound healing is to increase EphrinB1, EphrinB2 and EphB4. Low TNF-α and histopathological findings indicate that boron limits extensive wound healing.


2021 ◽  
Vol 48 (4) ◽  
pp. 9-14
Author(s):  
V. Marinov ◽  
M. Tzaneva ◽  
M. Zhelyazkova-Savova ◽  
S. Gancheva ◽  
St. Valcheva-Kuzmanova

Abstract Introduction: Trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis in animals is a commonly used model of inflammatory bowel disease (IBD). Eugenol (Eug) is a natural phenolic compound possessing promising antioxidant and anti-inflammatory therapeutic properties. Aim: The present study investigated the effects of Eug in a TNBS-induced rat colitis model using criteria for histopathological evaluation of the colonic damage. Materials and methods: Male Wistar rats were divided into 6 experimental groups, each of 10 rats: Control, TNBS, TNBS+Eug1, TNBS+Eug5, TNBS+Eug25, and TNBS+Eug125 group. Eug or the solvent (sunflower oil) was applied orally using an orogastric cannula. The control group and TNBS group were treated only with sunflower oil. Eug groups were treated with corresponding doses of Eug (1, 5, 25 and 125 mg/kg) dissolved in sunflower oil. Colitis was induced by the application of TNBS in the colon. The animal treatment began 6 days before the colitis induction and continued for 8 days after it. At the end of the experiment, colitis severity was evaluated histopathologically regarding epithelium injury, inflammatory cell infiltration, and formation of granulation tissue. Results: In all TNBS+Eug groups, the formation of granulation tissue was enhanced compared to TNBS. In group TNBS+Eug125 the difference was significant compared to the control group (p < 0.05). No significant improvement regarding the scores of epithelium injury and inflammatory cell infiltration was observed in Eug groups compared to TNBS group. Conclusion: Eug did not improve the signs of TNBS-induced epithelial injury and inflammatory cell infiltration, but stimulated the formation of granulation tissue which might be considered as a sign of healing.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hua-Ying Cai ◽  
Xiao-Xiao Fu ◽  
Hong Jiang ◽  
Shu Han

AbstractAnimal studies have indicated that increased blood-brain barrier (BBB) permeability and inflammatory cell infiltration are involved during the progression of Parkinson’s disease (PD). This study used C16, a peptide that competitively binds to integrin αvβ3 and inhibits inflammatory cell infiltration, as well as angiopoietin-1 (Ang-1), an endothelial growth factor crucial for blood vessel protection, to reduce inflammation and improve the central nervous system (CNS) microenvironment in murine models of PD. The combination of C16 and Ang-1 yielded better results compared to the individual drugs alone in terms of reducing dopaminergic neuronal apoptosis, ameliorating cognitive impairment, and electrophysiological dysfunction, attenuating inflammation in the CNS microenvironment, and improving the functional disability in PD mice or rats. These results suggest neuroprotective and anti-inflammatory properties of the C16 peptide plus Ang-1 in PD.


Sign in / Sign up

Export Citation Format

Share Document