Abstract 347: Targeted FAK Activation in Cardiomyocytes Protects the Heart from Doxorubicin-Induced Cardiomyopathy

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Zhaokang Cheng ◽  
Laura A DiMichele ◽  
Zeenat S Hakim ◽  
Mauricio Rojas ◽  
Christopher P Mack ◽  
...  

OBJECTIVE: We recently reported that cardiac-restricted activation of focal adhesion kinase (FAK) attenuated myocardial injury following ischemia/reperfusion using transgenic mice that express a FAK variant (termed SuperFAK) in cardiomyocytes. Here we interrogated whether targeted elevation of myocardial FAK activity could protect against cardiomyopathy induced by the highly effective chemotherapy drug Doxorubicin (DOX). METHODS AND RESULTS: Eight- to twelve-week-old male mice were given a single injection of DOX (20mg/kg, i.p.). At day 14, SuperFAK mice exhibited better survival (62.5%, n=8) than littermate control mice (37.5%, n=8). Serial echocardiography revealed that DOX administration markedly decreased cardiac function and ventricular wall thickness in control mice, whereas both parameters were better preserved in SuperFAK mice at day 5 (fractional shortening: 52.7±1.5% in SuperFAK vs . 38.9±3.7% in control, p <0.01; posterior wall end-systolic thickness: 1.83±0.12mm in SuperFAK vs . 1.43±0.12mm in control, p <0.05). Importantly, SuperFAK hearts exhibited a dramatic increase in FAK activity (as assessed by phospho-FAK Y397 immunoblotting) and a reduction in myocyte apoptosis (as assessed by TUNEL staining) in comparison with control hearts. DOX also induced apoptosis in cultured neonatal rat cardiomyocytes and adenoviral-mediated expression of SuperFAK ameliorated DOX-induced toxicity as assessed by MTT and TUNEL assays. Over-expression of SuperFAK also enhanced expression of the pro-survival NF-κB transcriptional targets Bcl-2, Bcl-xl, and X-linked inhibitor of apoptosis, whereas pharmacologically blockade of the NF-κB pathway completely abolished the up-regulation of these anti-apoptotic molecules by SuperFAK. CONCLUSIONS: Ventricular dysfunction and myocyte apoptosis induced by DOX was attenuated by enhancing cardiac FAK activity, which may represent a novel strategy to reduce anthracycline mediated cardiotoxicity in cancer patients undergoing chemotherapy.

2017 ◽  
Vol 44 (3) ◽  
pp. 1011-1023 ◽  
Author(s):  
Hui Liu ◽  
Xibo Jing ◽  
Aiqiao Dong ◽  
Baobao Bai ◽  
Haiyan Wang

Background/Aims: Myocardial ischemia/reperfusion (I/R) injury remains a great challenge in clinical therapy. Tissue inhibitor of metalloproteinases 3 (TIMP3) plays a crucial role in heart physiological and pathophysiological processes. However, the effects of TIMP3 on I/R injury remain unknown. Methods: C57BL/6 mice were infected with TIMP3 adenovirus by local delivery in myocardium followed by I/R operation or doxorubicin treatment. Neonatal rat cardiomyocytes were pretreated with TIMP3 adenovirus prior to anoxia/reoxygenation (A/R) treatment in vitro. Histology, echocardiography, in vivo phenotypical analysis, flow cytometry and western blotting were used to investigate the altered cardiac function and underlying mechanisms. Results: The results showed that upregulation of TIMP3 in myocardium markedly inhibited myocardial infarct areas and the cardiac dysfunction induced by I/R or by doxorubicin treatment. TUNEL staining revealed that TIMP3 overexpression attenuated I/R-induced myocardial apoptosis, accompanied by decreased Bax/Bcl-2 ratio, Cleaved Caspase-3 and Cleaved Caspase-9 expression. In vitro, A/R-induced cardiomyocyte apoptosis was abrogated by pharmacological inhibition of reactive oxygen species (ROS) production or MAPKs signaling. Attenuation of ROS production reversed A/R-induced MAPKs activation, whereas MAPKs inhibitors showed on effect on ROS production. Furthermore, in vivo or in vitro overexpression of TIMP3 significantly inhibited I/R- or A/R-induced ROS production and MAPKs activation. Conclusion: Our findings demonstrate that TIMP3 upregulation protects against cardiac I/R injury through inhibiting myocardial apoptosis. The mechanism may be related to inhibition of ROS-initiated MAPKs pathway. This study suggests that TIMP3 may be a potential therapeutic target for the treatment of I/R injury.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Yu ◽  
Wenliang Zha ◽  
Zhiqiang Ke ◽  
Qing Min ◽  
Cairong Li ◽  
...  

The function of curcumin on NADPH oxidase-related ROS production and cardiac apoptosis, together with the modulation of protein signalling pathways, was investigated in cardiomyocytes. Primary cultures of neonatal rat cardiomyocytes were exposed to 30 mmol/L high glucose with or without curcumin. Cell viability, apoptosis, superoxide formation, the expression of NADPH oxidase subunits, and potential regulatory molecules, Akt and GSK-3β, were assessed in cardiomyocytes. Cardiomyocytes exposure to high glucose led to an increase in both cell apoptosis and intracellular ROS levels, which were strongly prevented by curcumin treatment (10 μM). In addition, treatment with curcumin remarkably suppressed the increased activity of Rac1, as well as the enhanced expression ofgp91phoxandp47phoxinduced by high glucose. Lipid peroxidation and SOD were reversed in the presence of curcumin. Furthermore, curcumin treatment markedly inhibited the reduced Bcl-2/Bax ratio elicited by high glucose exposure. Moreover, curcumin significantly increased Akt and GSK-3βphosphorylation in cardiomyocytes treated with high glucose. In addition, LY294002 blocked the effects of curcumin on cardiomyocytes exposure to high glucose. In conclusion, these results demonstrated that curcumin attenuated high glucose-induced cardiomyocyte apoptosis by inhibiting NADPH-mediated oxidative stress and this protective effect is most likely mediated by PI3K/Akt-related signalling pathway.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaodong Wu ◽  
Ting Zhang ◽  
Ping Lyu ◽  
Mengli Chen ◽  
Gehui Ni ◽  
...  

Background: Diabetic cardiomyopathy is the primary complication associated with diabetes mellitus and also is a major cause of death and disability. Limited pharmacological therapies are available for diabetic cardiomyopathy. Qiliqiangxin (QLQX), a Chinese medication, has been proven to be beneficial for heart failure patients. However, the role and the underlying protective mechanisms of QLQX in diabetic cardiomyopathy remain largely unexplored.Methods: Primary neonatal rat cardiomyocytes (NRCMs) were treated with glucose (HG, 40 mM) to establish the hyperglycemia-induced apoptosis model in vitro. Streptozotocin (STZ, 50 mg/kg/day for 5 consecutive days) was intraperitoneally injected into mice to establish the diabetic cardiomyopathy model in vivo. Various analyses including qRT-PCR, western blot, immunofluorescence [terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining] histology (hematoxylin–eosin and Masson's trichrome staining), and cardiac function (echocardiography) were performed in these mice. QLQX (0.5 μg/ml in vitro and 0.5 g/kg/day in vivo) was used in this study.Results: QLQX attenuated hyperglycemia-induced cardiomyocyte apoptosis via activating peroxisome proliferation-activated receptor γ (PPARγ). In vivo, QLQX treatment protected mice against STZ-induced cardiac dysfunction and pathological remodeling.Conclusions: QLQX attenuates diabetic cardiomyopathy via activating PPARγ.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ran Li ◽  
Yuan Liu ◽  
Ying-guang Shan ◽  
Lu Gao ◽  
Fang Wang ◽  
...  

Previous studies demonstrated that Bailcalin (BAI) prevented cardiac injuries under different disease models. Whether BAI protected against type 2 diabetes mellitus- (T2DM-) associated cardiomyopathy was investigated in this study. T2DM was established by the combination of streptozotocin injection and high-fat diet in mice. BAI was administered daily for 6 months. After evaluating cardiac functions, mice hearts were removed and processed for morphological, biochemical, and molecular mechanism analyses. Neonatal rat cardiomyocytes (NRCM) were isolated and treated with high glucose and palmitate (HG/Pal) for in vitro investigation. BAI significantly ameliorated T2DM-induced cardiomyocyte hypertrophy, interstitial fibrosis, and lipid accumulation accompanied by markedly improved cardiac functions in diabetic mice. Mechanically, BAI restored decreased phosphorylation of AMPK and enhanced expression and nuclei translocation of Nrf2. In in vitro experiments, BAI also prevented NRCM from HG/Pal-induced apoptosis and oxidative stress injuries by increasing p-AMPK and Nrf2 accumulation. The means by which BAI restored p-AMPK seemed to be related to the antioxidative effects of Nrf2 after silencing AMPK or Nrf2 in NRCM. Furthermore, BAI regulated Nrf2 by inhibiting Nrf2 ubiquitination and consequent degradation mediated by Keap1. This study showed that BAI alleviated diabetes-associated cardiac dysfunction and cardiomyocyte injuries in vivo and in vitro via Keap1/Nrf2/AMPK-mediated antioxidation and lipid-lowering effects. BAI might be a potential adjuvant drug for diabetes cardiomyopathy treatment.


Pharmacology ◽  
2021 ◽  
Vol 106 (3-4) ◽  
pp. 189-201
Author(s):  
Shigang Qiao ◽  
Wen-jie Zhao ◽  
Huan-qiu Li ◽  
Gui-zhen Ao ◽  
Jian-zhong An ◽  
...  

Aim: It has been reported that necrostatin-1 (Nec-1) is a specific necroptosis inhibitor that could attenuate programmed cell death induced by myocardial ischemia/reperfusion (I/R) injury. This study aimed to observe the effect and mechanism of novel Nec-1 analog (Z)-5-(3,5-dimethoxybenzyl)-2-imine-1-methylimidazolin-4-1 (DIMO) on myocardial I/R injury. Methods: Male SD rats underwent I/R injury with or without different doses of DIMO (1, 2, or 4 mg/kg) treatment. Isolated neonatal rat cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment with or without DIMO (0.1, 1, 10, or 100 μM). Myocardial infarction was measured by TTC staining. Cardiomyocyte injury was assessed by lactate dehydrogenase assay (LDH) and flow cytometry. Receptor-interacting protein 1 kinase (RIP1K) and autophagic markers were detected by co-immunoprecipitation and Western blotting analysis. Molecular docking of DIMO into the ATP binding site of RIP1K was performed using GLIDE. Results: DIMO at doses of 1 or 2 mg/kg improved myocardial infarct size. However, the DIMO 4 mg/kg dose was ineffective. DIMO at the dose of 0.1 μM decreased LDH leakage and the ratio of PI-positive cells followed by OGD/R treatment. I/R or OGD/R increased RIP1K expression and in its interaction with RIP3K, as well as impaired myocardial autophagic flux evidenced by an increase in LC3-II/I ratio, upregulated P62 and Beclin-1, and activated cathepsin B and L. In contrast, DIMO treatment reduced myocardial cell death and reversed the above mentioned changes in RIP1K and autophagic flux caused by I/R and OGD/R. DIMO binds to RIP1K and inhibits RIP1K expression in a homology modeling and ligand docking. Conclusion: DIMO exerts cardioprotection against I/R- or OGD/R-induced injury, and its mechanisms may be associated with the reduction in RIP1K activation and restoration impaired autophagic flux.


Hypertension ◽  
2021 ◽  
Vol 78 (5) ◽  
pp. 1541-1554
Author(s):  
Hongyun Wang ◽  
Rusitanmujiang Maimaitiaili ◽  
Jianhua Yao ◽  
Yuling Xie ◽  
Sujing Qiang ◽  
...  

Plasma circulating extracellular vesicles (EVs) have been utilized as a potential therapeutic strategy to treat ischemic disease through intramyocardial injection (efficient but invasive) or tail vein injection (noninvasive but low cardiac retention). An effective and noninvasive delivery of EVs for future clinical use is necessary. The large animal (canine) model was complemented with a murine ischemia-reperfusion injury (IRI) model, as well as H9 human embryonic stem cell–induced cardiomyocytes or neonatal rat cardiomyocytes to investigate the effective delivery method and the role of plasma EVs in the IRI model. We further determine the crucial molecule within EVs that confers the cardioprotective role in vivo and in vitro and investigate the efficiency of CHP (cardiac homing peptide)-linked EVs in alleviating IRI. D-SPECT imaging showed that percutaneous intracoronary delivery of EVs reduced infarct extent in dogs. CHP-EVs further reduced IRI-induced cardiomyocyte apoptosis in mice and neonatal rat cardiomyocytes. Mechanistically, administration of EVs by percutaneous intracoronary delivery (in dog) and myocardial injection (in mice) just before reperfusion reduced infarct size of IRI by increasing miR-486 levels. miR-486–deleted EVs exacerbated oxygen-glucose deprivation/reoxygenation–induced human embryonic stem cell–induced cardiomyocytes and neonatal rat cardiomyocyte apoptosis. EV-miR-486 inhibited the PTEN (phosphatase and tensin homolog deleted on chromosome ten) expression and then promoted AKT (protein kinase B) activation in human embryonic stem cell–induced cardiomyocytes and neonatal rat cardiomyocytes. In conclusion, plasma-derived EVs convey miR-486 to the myocardium and attenuated IRI-induced infarction and cardiomyocyte apoptosis. CHP strategy was effective to improve cardiac retention of EVs in mice (in vivo) and dogs (ex vivo).


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Bor-Chyuan Su ◽  
Fan-E Mo

Fas/Fas ligand (FasL) is implicated in cardiac ischemia/reperfusion injury. However, cardiomyocytes in culture are resistant to FasL-induced apoptosis, suggesting that additional factor(s) are required for FasL-induced apoptosis. Matricellular protein CCN1 has been demonstrated to promote cytotoxicity of FasL in human skin fibroblasts. CCN1 is induced in a variety of cardiac pathologies. We assessed the hypothesis that CCN1 may be involved in the regulation of FasL-induced apoptosis in cardiomyocytes. We found that either FasL or CCN1 did not induce cell death in neonatal rat ventricular cardiomyocytes (NRVM). Interestingly, the combination of FasL+CCN1 generated 2-fold induction of apoptosis (vs. control p<0.001). An integrin-α 6 β 1 -binding defective mutant CCN1, CCN1-DM failed to exert synergy with FasL to induce apoptosis, indicating a critical role of α 6 β 1 . The engagement between CCN1 and α 6 β 1 instigated the elevation of cellular reactive oxygen species (ROS), the activation of mitogen activated protein kinase p38, and followed by the induction of cell surface display of Fas, thereby sensitizing NRVM to FasL-induced apoptosis. Pretreatment of the p38 inhibitor SB202190 abolished the CCN1-induced cell-surface Fas expression and the apoptosis induced by FasL+CCN1. In addition, we tested the interaction between CCN1 and FasL on the cardiomyoblast H9c2 cells. We found that FasL or CCN1 alone did not cause apoptosis in H9c2, and required the combination of FasL+CCN1 to induced apoptosis (vs. control p<0.001) in H9c2 cells, reminiscent of the observation in NRVM. Mechanistically, CCN1 acted through binding to integrin α 6 β 1 , ROS generation, and p38 activation, however, did not increase the expression of cell surface Fas for its synergy with FasL in H9c2 cells. Instead, CCN1 induced Bax translocation to mitochondria, which in turn led to the release of Smac from mitochondria to cytosol. The cytosolic Smac functions to neutralize XIAP. Smac is critical for CCN1 action, because the knockdown of Smac blunted the apoptotic activities of CCN1. In conclusion, CCN1 may play a detrimental role in a stressed heart to both the differentiated cardiomyocytes and the proliferative cardioblasts through distinct signaling mechanisms.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1667
Author(s):  
Jian-Hong Lin ◽  
Kun-Ta Yang ◽  
Pei-Ching Ting ◽  
Yu-Po Luo ◽  
Ding-Jyun Lin ◽  
...  

Myocardial ischemia/reperfusion (I/R) injury has been associated with ferroptosis, which is characterized by an iron-dependent accumulation of lipid peroxide to lethal levels. Gossypol acetic acid (GAA), a natural product taken from the seeds of cotton plants, prevents oxidative stress. However, the effects of GAA on myocardial I/R-induced ferroptosis remain unclear. This study investigated the ability of GAA to attenuate I/R-induced ferroptosis in cardiomyocytes along with the underlying mechanisms in a well-established rat model of myocardial I/R and isolated neonatal rat cardiomyocytes. H9c2 cells and cardiomyocytes were treated with the ferroptosis inducers erastin, RSL3, and Fe-SP. GAA could protect H9c2 cells against ferroptotic cell death caused by these ferroptosis inducers by decreasing the production of malondialdehyde and reactive oxygen species, chelating iron content, and downregulating mRNA levels of Ptgs2. GAA could prevent oxygen-glucose deprivation/reperfusion-induced cell death and lipid peroxidation in the cardiomyocytes. Moreover, GAA significantly attenuated myocardial infarct size, reduced lipid peroxidation, decreased the mRNA levels of the ferroptosis markers Ptgs2 and Acsl4, decreased the protein levels of ACSL4 and NRF2, and increased the protein levels of GPX4 in I/R-induced ex vivo rat hearts. Thus, GAA may play a cytoprotectant role in ferroptosis-induced cardiomyocyte death and myocardial I/R-induced ferroptotic cell death.


2006 ◽  
Vol 20 (11) ◽  
pp. 1883-1885 ◽  
Author(s):  
Xudong Liao ◽  
Jun‐Ming Liu ◽  
Lei Du ◽  
Aihui Tang ◽  
Yingli Shang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document