Abstract 037: Transient Cardiac Expression Of Constitutively Active G alpha Q Activates Renin-angiotensin System, Leading To Progressive Heart Failure And Ventricular Arrhythmias In Transgenic Mice

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Naoko Matsushita ◽  
Masamichi hirose ◽  
Yasuchika Taeishi ◽  
Satoshi Suzuki ◽  
Toshihide Kashihara ◽  
...  

Introduction: Transgenic mice with transient cardiac expression of constitutively active Galpha q (Gαq-TG) caused progressive heart failure and ventricular arrhythmias after the initiating stimulus becomes undetectable. However, the mechanisms are still unknown. Renin-angiotensin system plays a critical role in the development of cardiac hypertrophy and heart failure. We examined the effects of chronic administration of olmesartan on ventricular function, the number of premature ventricular contractions (PVC), and ventricular remodeling in Gαq-TG mice. Methods and Results: Olmesartan (1 mg/kg/day) or vehicle was chronically administered to Gαq-TG from 6 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic olmesartan treatment prevented the severe reduction of left ventricular fractional shortening and inhibited ventricular interstitial fibrosis and ventricular myocyte hypertrophy in Gαq-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC) was frequently (more than 20 beats/min) observed in 9 of 10 vehicle-treated Gαq-TG but in none of 10 olmesartan -treated Gαq-TG. The QT interval was significantly shorter in olmesartan-treated Gαq-TG than vehicle-treated Gαq-TG. CTGF, collagen type 1, ANP, BNP, and β-MHC gene expression was increased in vehicle-treated Gαq-TG. Olmesartan significantly decreased these gene expressions in Gαq-TG. Moreover, protein expressions of canonical transient receptor potential (TRPC) channels 3 and 6 increased in vehicle-treated Gαq-TG hearts. Olmesartan significantly decreased TRPC6 expressions in Gαq-TG. Angiotensin converting enzyme (ACE) 1 and 2 gene expressions were also increased in vehicle-treated Gαq-TG and was not decreased to the control level in olmesartan-treated Gαq-TG. Conclusions: These findings suggest that renin-angiotensin system has an important role in the development of cardiac hypertrophy and heart failure even if the initiating stimulus is different from the activation of renin-angiotensin system.

2005 ◽  
Vol 288 (6) ◽  
pp. H2637-H2646 ◽  
Author(s):  
Qiming Shao ◽  
Bin Ren ◽  
Vijayan Elimban ◽  
Paramjit S. Tappia ◽  
Nobuakira Takeda ◽  
...  

The activities of both sarcolemmal (SL) Na+-K+-ATPase and Na+/Ca2+ exchanger, which maintain the intracellular cation homeostasis, have been shown to be depressed in heart failure due to myocardial infarction (MI). Because the renin-angiotensin system (RAS) is activated in heart failure, this study tested the hypothesis that attenuation of cardiac SL changes in congestive heart failure (CHF) by angiotensin-converting enzyme (ACE) inhibitors is associated with prevention of alterations in gene expression for SL Na+-K+-ATPase and Na+/Ca2+ exchanger. CHF in rats due to MI was induced by occluding the coronary artery, and 3 wk later the animals were treated with an ACE inhibitor, imidapril (1 mg·kg−1·day−1), for 4 wk. Heart dysfunction and cardiac hypertrophy in the infarcted animals were associated with depressed SL Na+-K+-ATPase and Na+/Ca2+ exchange activities. Protein content and mRNA levels for Na+/Ca2+ exchanger as well as Na+-K+-ATPase α1-, α2- and β1-isoforms were depressed, whereas those for α3-isoform were increased in the failing heart. These changes in SL activities, protein content, and gene expression were attenuated by treating the infarcted animals with imidapril. The beneficial effects of imidapril treatment on heart function and cardiac hypertrophy as well as SL Na+-K+-ATPase and Na+/Ca2+ exchange activities in the infarcted animals were simulated by enalapril, an ACE inhibitor, and losartan, an angiotensin receptor antagonist. These results suggest that blockade of RAS in CHF improves SL Na+-K+-ATPase and Na+/Ca2+ exchange activities in the failing heart by preventing changes in gene expression for SL proteins.


Sign in / Sign up

Export Citation Format

Share Document