Abstract 333: Deficiency of DJ-1 Leads to Increased Injury following Myocardial Ischemia by Enhancing Apoptosis and Oxidative Stress

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Jonathan P Lambert ◽  
Chad K Nicholson ◽  
John W Calvert

Background: DJ-1 is a ubiquitously expressed protein that has typically been associated with the development of early onset Parkinson’s disease. Recent data suggests that it also plays a role in the cellular response to stress. Although much is known about DJ-1 in the brain, very little has been investigated in the heart. Here, we tested the hypothesis that a deficiency in DJ-1 would enhance myocardial ischemia-reperfusion (MI/R) injury. Methods and Results: Wild-type (WT) control and DJ-1 knockout (DJ-1 KO) mice were subjected to 45 min of left coronary artery ischemia followed by 24 hrs of reperfusion. The deficiency of DJ-1 significantly increased myocardial infarct size relative to both the area-at-risk and entire left ventricle, as well as increased circulating troponin-I levels (Panels A-B). Echocardiography and hemodynamic analysis at 1 week of reperfusion revealed that DJ-1 KO mice experienced greater left ventricular dilatation and hypertrophy, displayed exacerbated left ventricular dysfunction, and displayed worse contractility and relaxation when compared to WT controls. In an effort to evaluate the signaling mechanism responsible for the increased injury in DJ-1 KO mice, additional WT and KO animals were subjected to 45 min of ischemia followed by 4 hrs of reperfusion. DJ-1 KO hearts were found to display higher levels of oxidative stress, greater caspase-3 activity (Panel C), enhanced phosphorylation of Jnk, and enhanced activation of the mitochondrial fission protein, dynamin-related protein 1 (Drp1). Conclusions: These findings provide important information that DJ-1 plays a protective role in heart against acute MI/R injury.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Dong Wang ◽  
Xin Guo ◽  
Mingjie Zhou ◽  
Jichun Han ◽  
Bo Han ◽  
...  

This study was conducted to evaluate the cardioprotective property of the aqueous extract of lavender flower (LFAE). The myocardial ischemia/reperfusion (I/R) injury of rat was prepared by Langendorff retrograde perfusion technology. The heart was preperfused with K-H solution containing LFAE for 10 min before 20 minutes global ischemia, and then the reperfusion with K-H solution was conducted for 45 min. The left ventricular developed pressure (LVDP) and the maximum up/downrate of left ventricular pressure (±dp/dtmax) were recorded by physiological recorder as the myocardial function and the myocardial infarct size was detected by TTC staining. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities in the effluent were measured to determine the myocardial injury degree. The superoxide anion dismutase (SOD) and malondialdehyde (MDA) in myocardial tissue were detected to determine the oxidative stress degree. The results showed that the pretreatment with LFAE significantly decreased the myocardial infarct size and also decreased the LDH, CK activities, and MDA level, while it increased the LVDP, ±dp/dtmax, SOD activities, and the coronary artery flow. Our findings indicated that LFAE could provide protection for heart against the I/R injury which may be related to the improvement of myocardial oxidative stress states.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Chelsea Organ ◽  
Zhen Li ◽  
Yu Zhao ◽  
Chuntao Yang ◽  
Shashi Bhushan ◽  
...  

Background: Hydrogen sulfide (H2S) protects against acute myocardial ischemia/reperfusion (MI/R) injury and heart failure by ameliorating oxidative stress, improving mitochondrial function, and attenuating apoptosis. One of the major limitations of currently available H2S donors is poor pharmacokinetics profiles that result in very rapid and uncontrolled H2S release. NSHD-1 and NSHD-2 are recently developed thiol-activated H2S donors designed for sustained release of H2S upon activation by molecules containing thiol groups such as cysteine and glutathione. We hypothesized that these novel H2S donors would generate H2S for extended periods and ameliorate myocardial cell death following MI/R in an in vivo murine model. Methods and Results: C57BL6/J male mice (10-12 weeks of age) were subjected to 45 minutes of MI followed by 24 hours of R. At the time of reperfusion, animals received Vehicle (0.5% THF), NSHD-1 (50 μg/kg and 100 μg/kg), or NSHD-2 (50 μg/kg) by direct intracardiac (i.c.) injection. In addition, at 4 hours of R, plasma was collected for troponin-I measurements. In preliminary studies we observed sustained release of H2S with both of these H2S donors. Myocardial infarct size was reduced by 35% (p < 0.01 vs. Vehicle) in mice treated with NSHD-1 (100 μg/kg), 43% (p < 0.05 vs. Vehicle) in mice treated with NSHD-2 (50 μg/kg), and 54% (p < 0.01 vs. Vehicle) in mice treated with NSHD-2 (100 μg/kg). Conclusions: NSHD-1 and NSHD-2 significantly attenuate MI/R injury in a murine model. Experiments are currently underway to further define the in vivo pharmacokinetics of H2S release from these agents, mechanisms of action, and safety profile.


2018 ◽  
Vol 314 (2) ◽  
pp. H311-H321 ◽  
Author(s):  
Jessica M. Bradley ◽  
Zhen Li ◽  
Chelsea L. Organ ◽  
David J. Polhemus ◽  
Hiroyuki Otsuka ◽  
...  

Oxidative stress results in mtDNA damage and contributes to myocardial cell death. mtDNA repair enzymes are crucial for mtDNA repair and cell survival. We investigated a novel, mitochondria-targeted fusion protein (Exscien1-III) containing endonuclease III in myocardial ischemia-reperfusion injury and transverse aortic constriction (TAC)-induced heart failure. Male C57/BL6J mice (10–12 wk) were subjected to 45 min of myocardial ischemia and either 24 h or 4 wk of reperfusion. Exscien1-III (4 mg/kg ip) or vehicle was administered at the time of reperfusion. Male C57/BL6J mice were subjected to TAC, and Exscien1-III (4 mg/kg i.p) or vehicle was administered daily starting at 3 wk post-TAC and continued for 12 wk. Echocardiography was performed to assess left ventricular (LV) structure and function. Exscien1-III reduced myocardial infarct size ( P < 0.01) at 24 h of reperfusion and preserved LV ejection fraction at 4 wk postmyocardial ischemia. Exscien1-III attenuated TAC-induced LV dilation and dysfunction at 6–12 wk post-TAC ( P < 0.05). Exscien1-III reduced ( P < 0.05) cardiac hypertrophy and maladaptive remodeling after TAC. Assessment of cardiac mitochondria showed that Exscien1-III localized to mitochondria and increased mitochondrial antioxidant and reduced apoptotic markers. In conclusion, our results indicate that administration of Exscien1-III provides significant protection against myocardial ischemia and preserves myocardial structure and LV performance in the setting of heart failure. NEW & NOTEWORTHY Oxidative stress-induced mitochondrial DNA damage is a prominent feature in the pathogenesis of cardiovascular diseases. In the present study, we demonstrate the efficacy of a novel, mitochondria-targeted fusion protein that traffics endonuclease III specifically for mitochondrial DNA repair in two well-characterized murine models of cardiac injury and failure.


1998 ◽  
Vol 275 (5) ◽  
pp. H1865-H1872 ◽  
Author(s):  
Anthony J. Palazzo ◽  
Steven P. Jones ◽  
Donald C. Anderson ◽  
D. Neil Granger ◽  
David J. Lefer

We investigated in vivo coronary P-selectin expression and its pathophysiological consequences in a murine model of myocardial ischemia-reperfusion (MI/R) using wild-type and P-selectin deficient (−/−) mice. Coronary P-selectin expression [μg monoclonal antibody (MAb)/g tissue] was measured using a radiolabeled MAb method after 30 min of myocardial ischemia and 20 min of reperfusion. P-selectin expression in wild-type mice was significantly ( P< 0.01) elevated in the ischemic zone (0.070 ± 0.010) compared with the nonischemic zone (0.037 ± 0.008). Myocardial P-selectin expression was nearly undetectable in P-selectin −/− mice after MI/R. Furthermore, myocardial infarct size (% of area at risk) after 30 min of myocardial ischemia and 120 min of reperfusion was 42.5 ± 4.4 in wild-type mice and 24.4 ± 4.0 in P-selectin −/− mice ( P < 0.05). In additional experiments of prolonged myocardial ischemia (60 min) and reperfusion (120 min), myocardial infarct size was similar in P-selectin −/− mice and wild-type mice. Our results clearly demonstrate the involvement of coronary P-selectin in the development of myocardial infarction after MI/R.


2017 ◽  
Vol 44 (5) ◽  
pp. 1939-1948 ◽  
Author(s):  
Liliang Shu ◽  
Wanzhe Zhang ◽  
Chen Huang ◽  
Gongcheng Huang ◽  
Gang Su

Background/Aims: Troxerutin, also known as vitamin P4, has been commonly used in the treatment of chronic venous insufficiency (CVI) disease. However, its effect on in vivo myocardial ischemia/reperfusion (I/R) injury, a model that closely mimics acute myocardial infarction in humans, is still unknown. Methods: The myocardial I/R injury rat model was created with troxerutin preconditioning. Myocardial infarct size was evaluated by the Evans blue-TTC method. Hemodynamic parameters, including the heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP), maximal rate of rise in blood pressure in the ventricular chamber (+dp/dt max), and maximal rate of decline in blood pressure in the ventricular chamber (-dp/dt max) were monitored. Serum TNF-α and IL-10 were determined by ELISA kit. Cell apoptosis was detected by MTT method. Results: Troxerutin preconditioning significantly reduced myocardial infarct size, improved cardiac function, and decreased the levels of creatine kinase (CK), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) in the I/R injury rat model. The serum and mRNA levels of TNF-α and IL-10 as well as some apoptosis markers (Bax, Caspase 3) also decreased. Moreover, troxerutin pretreatment markedly increased the phosphorylation of Akt, and blocking PI3K activity by LY294002 abolished the protective effect of troxerutin on I/R injury. Conclusion: Troxerutin preconditioning protected against myocardial I/R injury via the PI3K/Akt pathway.


2021 ◽  
Vol 16 (6) ◽  
pp. 1934578X2110295
Author(s):  
Yichuan Jiang ◽  
Qian Yu ◽  
Dayun Sui ◽  
Xiaofeng Yu ◽  
Huali Xu ◽  
...  

20(S)-protopanaxadiol (PPD) is an active natural product which is transformed from protopanaxadiol-type ginsenosides. The present study was conducted to evaluate the effects of PPD on myocardial ischemia/reperfusion (I/R) injury in a rat model. PPD (20mg/kg) or positive-control drug Diltiazem (10mg/kg) was administered daily for 7 days before left anterior descending I/R operation. After 2-hour reperfusion, changes of cardiac morphology, structure, and function were evaluated by HE staining and echocardiography. Myocardial infarct size was assessed using nitroblue tetrazolium staining. The activities of cardiac enzymes in serum were also evaluated. Cardiomyocyte apoptosis was detected using the terminal dUTP nick end labelling (TUNEL) assay. The extent of oxidative stress was evaluated according to the activities of superoxide dismutase (SOD) and glutathione per oxidase (GPx) and the levels of malondialdehyde (MDA). Western blot and immunohistochemistry were used to determine the expression of apoptosis associated proteins, including Bcl-2, Bax, cleaved Caspase-3, cleaved Caspase-9, and cytochrome C. According to the results, PPD reduced I/R‑induced increases in myocardial infarct size and improved cardiac function. Furthermore, PPD decreased cardiomyocyte apoptosis on TUNEL staining, which was verified by increased Bcl-2, and decreased expression of Bax, cytochrome C, cleaved Caspase-9, and cleaved Caspase-3 in I/R rat myocardium. Additionally, PPD reduced MDA levels and increased the anti-oxidative capacity by upregulating the activities of SOD and GPx. Taken together, the results suggest that PPD serves a protective role against oxidative stress and cardiomyocyte apoptosis during myocardial ischemia/reperfusion injury.


2005 ◽  
Vol 83 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Zhengyuan Xia ◽  
Kuo-Hsing Kuo ◽  
John H McNeill ◽  
David M Ansley

The purpose of this study was to investigate the effects of bosentan, a mixed endothelin receptor A and B subtype antagonist, on myocardial ischemia-reperfusion injury and to explore the influence of the timing of bosentan administration on its cardioprotective effects. Adult rat hearts were perfused by the Langendorff technique with Krebs-Henseleit solution (KH) at a constant flow rate at 10 mL/min. Global myocardial ischemia was induced by stopping KH perfusion for 40 min, and this was followed by 60 min of reperfusion. Hearts were randomized to 1 of 3 experimental groups (n = 7 each): untreated control; treatment with bosentan 1 µmol/L 10 min prior to, during 40 min global ischemia, and for 15 min of reperfusion (BOS); or treatment with bosentan 1 µmol/L after 15 min of reperfusion (BOS-R). We observed that BOS-R, but not the BOS treatment regimen, significantly reduced the release of cardiac-specific creatine kinase and postischemic myocardial infarct size (P < 0.05 vs. control) without affecting myocardial contractility. Left ventricular developed pressure in the BOS group was significantly (P < 0.01) lower than that in the control group throughout reperfusion. It is concluded that pharmacologically delayed antagonism of endothelin-1 during reperfusion attenuates postischemic myocardial injury. Endothelin-1 antagonist application during early reperfusion may exacerbate postischemic myocardial dysfunction.Key words: bosentan, ischemia, heart, rat, endothelin-1 antagonist.


2010 ◽  
Vol 299 (2) ◽  
pp. H437-H445 ◽  
Author(s):  
M. A. Hassan Talukder ◽  
Fuchun Yang ◽  
Hiroaki Shimokawa ◽  
Jay L. Zweier

Ischemic preconditioning (IPC) is a powerful phenomenon that provides potent cardioprotection in mammalian hearts; however, the role of endothelial nitric oxide (NO) synthase (eNOS)-mediated NO in this process remains highly controversial. Questions also remain regarding this pathway as a function of sex and ischemic duration. Therefore, we performed extensive experiments in wild-type (WT) and eNOS knockout (eNOS−/−) mice to evaluate whether the infarct-limiting effect of IPC depends on eNOS, ischemic periods, and sex. Classical IPC was induced by three cycles of 5 min of regional coronary ischemia separated by 5 min of reperfusion and was followed by 30 or 60 min of sustained ischemia and 24 h of reperfusion. The control ischemia-reperfusion protocol had 30 or 60 min of ischemia followed by 24 h of reperfusion. Protection was evaluated by measuring the myocardial infarct size as a percentage of the area at risk. The major findings were that regardless of sex, WT mice exhibited robust IPC with significantly smaller myocardial infarction, whereas eNOS−/− mice did not. IPC-induced cardiac protection was absent in eNOS−/− mice of both Jackson and Harvard origin. In general, female WT mice had smaller infarctions compared with male WT mice. Although prolonged ischemia caused significantly larger infarctions in WT mice of both sexes, they were consistently protected by IPC. Importantly, prolonged myocardial ischemia was associated with increased mortality in eNOS−/− mice, and the survival rate was higher in female eNOS−/− mice compared with male eNOS−/− mice. In conclusion, IPC protects WT mice against in vivo myocardial ischemia-reperfusion injury regardless of sex and ischemic duration, but the deletion of eNOS abolishes the cardioprotective effect of classical IPC.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Zhaobin Xu ◽  
Debra G Wheeler ◽  
Shouvik D Mahamud ◽  
Karen M Dwyer ◽  
Simon C Robson ◽  
...  

Background: During myocardial stress, extracellular levels of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) increase. These extracellular ATP and ADP levels are modulated via hydrolysis by ectonucleoside triphosphate diphosphohydrolase 1 (ENTDP-1/CD39) to adenosine monophosphate (AMP) subsequently converted by ecto-5'-nucleotidase (CD73) to the anti-thrombotic, cardioprotective nucleoside, adenosine. Previous data demonstrated significantly smaller infarcts in mice globally overexpressing CD39. The current objective was to determine whether tissue specific overexpression of CD39 in the heart would reduce myocardial ischemia/reperfusion injury. Methods: Myocardial ischemia/reperfusion (I/R) injury was evaluated in transgenic mice overexpressing human CD39 driven by the α-MHC promoter. I/R injury was induced by ligation of the left anterior descending (LAD) artery for 60 min followed by 24 hours of reperfusion. Myocardial infarct size was determined by staining with triphenyl tetrazolium chloride (TTC) and the area-at-risk was delineated by perfusion with 5% Phthalo Blue. Results: Expression of CD39 in the heart tissue was confirmed by Western blot analysis. In response to 60 minutes of ischemia followed by 24 hours of reperfusion, α-MHC CD39-OE animals displayed a marked reduction in infarct size (WT: 31.68%±4.64 vs TG: 6.14%± 2.48, N=5/group, P<0.01), relative to wild-type controls (Figure). Conclusions: Overexpression of CD39 in cardiac tissue alone significantly attenuates myocardial ischemic injury.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Yun Wu ◽  
Yao Lu ◽  
Eric R Gross

Toxic reactive aldehydes are formed during ischemia-reperfusion. The ion channel transient receptor potential ankryin 1 (TRPA1) is irreversibly modified by reactive aldehydes which can cause calcium influx and cell death. Here we tested whether topically applied creams containing a reversible TRPA1 agonist could reduce myocardial infarct size. Male Sprague-Dawley rats 8-10 weeks age were subjected to an in vivo myocardial ischemia-reperfusion model of 30 minutes of left anterior descending (LAD) coronary artery ischemia followed by 2 hours reperfusion. Prior to ischemia, rats were untreated or had 1g of cream applied to the abdomen. The creams tested were IcyHot, Bengay, Tiger Balm, or preparation H (Fig. 1A). Hearts were negatively stained for the area at risk and the infarct size was determined by using TTC staining (Fig. 1B). A subset of rodents prior to receiving IcyHot also received an intravenous bolus of the TRPA1 antagonist TCS-5861528 (1mg/kg) or AP-18 (1mg/kg). Interestingly, both IcyHot and Bengay reduced myocardial infarct size compared to untreated rodents (Fig. 1C and 1D IcyHot: 41±3%*, Bengay: 50±2%* versus control 62±1%, n=6/group, *P<0.001). Both preparation H and Tiger Balm failed to reduce myocardial infarct size (Tiger Balm: 63±2%, preparation H 59±2%). Giving a TRPA1 antagonist prior to IcyHot also blocked the reduction in infarct size. Our additional data also indicates the methyl salicylate (mint) in IcyHot and Bengay is the agent that limits myocardial infarct size. Since IcyHot and Bengay are safely used by humans, targeting TRPA1 by using products such as these could be quickly translatable and widely used to reduce ischemia-reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document