Abstract 191: Deletion or Knockdown of Myotonic Dystrophy Protein Kinase Does Not Affect Cardiac Conduction or Ejection Fraction in Mice

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Samuel Carrell ◽  
David Auerbach ◽  
Sanjay Pandey ◽  
Frank Bennett ◽  
Robert Dirksen ◽  
...  

Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, causes dominantly-inherited muscle weakness, defects of cardiac conduction, variable LV dysfunction, and risk of sudden death. The genetic basis is an expanded CTG repeat in the 3’ untranslated region of DMPK. DM1 patients are functionally hemizygous for DMPK protein, due to nuclear retention of mRNA having expanded repeats. The cardiac aspects are attributed to DMPK loss, toxicity of RNA with expanded repeats, or both. Dmpk heterozygous (+/-) and homozygous knockout (-/-) mice were reported to show AV conduction abnormalities resembling DM1 (Berul et al, JCI, 1999). In an effort to reduce RNA toxicity, antisense oligonucleotides (ASOs) targeting DMPK mRNA have recently entered clinical trials. DM1 phenotypes in skeletal muscle were corrected by ASO knockdown of toxic RNA in mice (Wheeler et al, Nature, 2012). While ASOs may have similar potential to mitigate RNA toxicity in the heart, there is risk of aggravated DMPK deficiency. To reexamine the role of DMPK in the conduction system we studied mice with Dmpk gene deletion or ASO knockdown. We obtained ECGs and echocardiograms on Dmpk -/- and +/- mice, compared to WT littermates. The +/- mice were treated with Dmpk-targeting ASOs or saline. Subcutaneous injection of 50 mg/kg/wk ASO was started at age 2 months, then shifted to biweekly injections after 6 weeks. Dmpk expression in hearts of +/- mice was ~50% of WT, and was further reduced by ASOs (84 ± 3% decrease of mRNA, 93 ± 2% decrease of protein, relative to WT). Surface ECGs and echocardiography at 6 and 10 months showed no differences of heart rate, cardiac conduction, or ejection fraction in WT, saline-treated +/-, ASO-treated +/-, or -/- mice. Conscious, unrestrained ECGs obtained at 11-12 months by radiotelemetry showed no differences among WT, saline-treated +/-, ASO-treated +/-, or -/- mice. We conclude that ASOs can induce posttranscriptional silencing of Dmpk in murine hearts. Constitutive absence of DMPK did not impact cardiac conduction or contractility, and the same was true for ASO knockdown to levels <15% of WT. Our data support the idea that cardiac dysfunction in DM1 results mainly from RNA toxicity, which potentially could be prevented or alleviated by ASOs.

2003 ◽  
Vol 13 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Gurman S. Pall ◽  
Keith J. Johnson ◽  
Godfrey L. Smith

Dysfunction of the gene encoding DMPK (myotonic dystrophy protein kinase) has been implicated in the human neuromuscular disease myotonic dystrophy (DM1). The cardiac features of the disease include progressive conduction defects and ventricular arrhythmias. These defects have been observed in hearts of mice deficient for DMPK function. We have investigated the role of DMPK in the function of ventricular cardiomyocytes using dmpk knockout (KO) mice. A deficit in DMPK caused enhanced basal contractility of single cardiomyocytes and an associated increase in intracellular Ca2+, measured using fura-2. Biochemical measurements indicated hyperphosphorylation of phospholamban (PLB) in KO mice. This suggests increased Ca2+ uptake into the sarcoplasmic reticulum (SR) as the underlying cause of enhanced contractility. This conclusion was supported by the larger amplitude of caffeine-induced Ca2+ release from the SR in KO cardiomyocytes. Concurrent with hyperphosphorylated PLB, the response to isoprenaline was reduced. These observations suggest dmpk has a modulatory role in the control of intracellular Ca2+ concentration in mouse ventricular cardiomyocytes, loss of which may contribute to cardiac dysfunction in DM1.


2006 ◽  
Vol 38 (9) ◽  
pp. 1066-1070 ◽  
Author(s):  
Mani S Mahadevan ◽  
Ramesh S Yadava ◽  
Qing Yu ◽  
Sadguna Balijepalli ◽  
Carla D Frenzel-McCardell ◽  
...  

PLoS ONE ◽  
2007 ◽  
Vol 2 (11) ◽  
pp. e1134 ◽  
Author(s):  
Esther Llagostera ◽  
Daniele Catalucci ◽  
Luc Marti ◽  
Marc Liesa ◽  
Marta Camps ◽  
...  

2010 ◽  
Vol 6 (2) ◽  
pp. 33 ◽  
Author(s):  
Christopher R deFilippi ◽  
G Michael Felker ◽  
◽  

For many with heart failure, including the elderly and those with a preserved ejection fraction, both risk stratification and treatment are challenging. For these large populations and others there is increasing recognition of the role of cardiac fibrosis in the pathophysiology of heart failure. Galectin-3 is a novel biomarker of fibrosis and cardiac remodelling that represents an intriguing link between inflammation and fibrosis. In this article we review the biology of galectin-3, recent clinical research and its application in the management of heart failure patients.


Sign in / Sign up

Export Citation Format

Share Document