rna toxicity
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 8)

H-INDEX

22
(FIVE YEARS 3)

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 910
Author(s):  
Maya Braun ◽  
Shachar Shoshani ◽  
Anna Mellul-Shtern ◽  
Yuval Tabach

Pathologic expansions of DNA nucleotide tandem repeats may generate toxic RNA that triggers disease phenotypes. RNA toxicity is the hallmark of multiple expansion repeat disorders, including myotonic dystrophy type 1 (DM1). To date, there are no available disease-modifying therapies for DM1. Our aim was to use drug repositioning to ameliorate the phenotype of affected individuals in a nematode model of DM1. As the RNA interference pathway plays a key role in mediating RNA toxicity, we investigated the effect of aurintricarboxylic acid. We demonstrated that by perturbing the RNA interference machinery using aurintricarboxylic acid, we could annihilate the RNA toxicity and ameliorate the phenotype. As our approach targets a universal disease mechanism, it is potentially relevant for more expansion repeat disorders.


2021 ◽  
Vol 36 (11) ◽  
pp. 2464-2467
Author(s):  
Geena Skariah ◽  
Roger Lee Albin

2021 ◽  
Author(s):  
Pan P. Li ◽  
Roumita Moulick ◽  
Hongxuan Feng ◽  
Xin Sun ◽  
Nicolas Arbez ◽  
...  

2021 ◽  
Author(s):  
Maya Braun ◽  
Shachar Shoshani ◽  
Joana Teixeira ◽  
Anna Mellul-Shtern ◽  
Maya Miller ◽  
...  

Nucleotide repeat expansions are a hallmark of over 40 neurodegenerative diseases. These repeats cause RNA toxicity and trigger multisystemic symptoms that worsen with age. RNA toxicity can trigger, through an unclear mechanism, severe disease manifestation in infants that inherited repeats from their mothers. Here we show in Caenorhabditis elegans how RNA interference machinery causes intergenerational toxicity through inheritance of siRNAs derived from CUG repeats. The maternal repeat-derived small RNAs cause transcriptomic changes in the offspring, reduce motility and shorten lifespan. However, the toxicity phenotypes in the offspring can be rescued by perturbing the RNAi machinery in affected mothers. This points to a novel mechanism linking maternal bias and the RNAi machinery and suggests that toxic RNA is transmitted to offspring and causes disease phenotypes through intergenerational epigenetic inheritance.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Bart Swinnen ◽  
Wim Robberecht ◽  
Ludo Van Den Bosch

2019 ◽  
Vol 20 (16) ◽  
pp. 4017 ◽  
Author(s):  
Kaalak Reddy ◽  
Jana R. Jenquin ◽  
John D. Cleary ◽  
J. Andrew Berglund

This review, one in a series on myotonic dystrophy (DM), is focused on the development and potential use of small molecules as therapeutics for DM. The complex mechanisms and pathogenesis of DM are covered in the associated reviews. Here, we examine the various small molecule approaches taken to target the DNA, RNA, and proteins that contribute to disease onset and progression in myotonic dystrophy type 1 (DM1) and 2 (DM2).


2019 ◽  
Vol 28 (14) ◽  
pp. 2330-2338 ◽  
Author(s):  
Ramesh S Yadava ◽  
Yun K Kim ◽  
Mahua Mandal ◽  
Karunasai Mahadevan ◽  
Jordan T Gladman ◽  
...  

Abstract Myotonic dystrophy type 1 (DM1) is caused by an expanded (CTG)n tract in the 3′UTR of the DM protein kinase (DMPK) gene. The RNA transcripts produced from the expanded allele sequester or alter the function of RNA-binding proteins (MBNL1, CUGBP1, etc.). The sequestration of MBNL1 results in RNA-splicing defects that contribute to disease. Overexpression of MBNL1 in skeletal muscle has been shown to rescue some of the DM1 features in a mouse model and has been proposed as a therapeutic strategy for DM1. Here, we sought to confirm if overexpression of MBNL1 rescues the phenotypes in a different mouse model of RNA toxicity. Using an inducible mouse model of RNA toxicity in which expression of the mutant DMPK 3′UTR results in RNA foci formation, MBNL1 sequestration, splicing defects, myotonia and cardiac conduction defects, we find that MBNL1 overexpression did not rescue skeletal muscle function nor beneficially affect cardiac conduction. Surprisingly, MBNL1 overexpression also did not rescue myotonia, though variable rescue of Clcn1 splicing and other splicing defects was seen. Additionally, contrary to the previous study, we found evidence for increased muscle histopathology with MBNL1 overexpression. Overall, we did not find evidence for beneficial effects from overexpression of MBNL1 as a means to correct RNA toxicity mediated by mRNAs containing an expanded DMPK 3′UTR.


2018 ◽  
Vol 115 (34) ◽  
pp. 8639-8644 ◽  
Author(s):  
Pragya Mittal ◽  
James Brindle ◽  
Julie Stephen ◽  
Joshua B. Plotkin ◽  
Grzegorz Kudla

Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene inEscherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic toE. coli. Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression.


Sign in / Sign up

Export Citation Format

Share Document