Abstract WP498: Impaired Pericyte Constriction and Cerebral Blood Flow Autoregulationin Diabetes

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Yedan Liu ◽  
Shaoxun Wang ◽  
Ya Guo ◽  
Huawei Zhang ◽  
Richard Roman ◽  
...  

Diabetes is the primary pathological factor attributed to Alzheimer’s disease and vascular cognitive impairment. Previous studies demonstrated that hyperglycemia promoted oxidative stress in the cerebral vasculature. Cerebrovascular pericytes contribute to maintaining blood-brain barrier (BBB) integrity and regulating cerebral blood flow (CBF). However, whether hyperglycemia diminishes the contractile capability of pericytes, impairs CBF autoregulation and increases BBB permeability are unclear. In the present study, we examined the role of pericytes in cerebrovascular function and cognition in diabetes using cell culture in vitro , isolated penetrating arterioles ex vivo and CBF autoregulation in vivo . Reactive oxygen species were elevated in high glucose (HG, 30 mM) treated vs. normal glucose (NG, 5.5 mM) treated pericytes. Further, mitochondrial superoxide production was increased in HG-treated vs. NG-treated group (13.24 ± 1.01 arbitrary unit (a.u.)/30min vs. 6.98 ± 0.36 a.u./30min). Mitochondrial respiration decreased in HG-treated vs. NG-treated pericytes (3718 ± 185.9 pmol/min/mg, n=10 vs. 4742 ± 284.5 pmol/min/mg, n=10) as measured by a Seahorse XFe24 analyzer. HG-treated pericytes displayed fragmented mitochondria in association with increased fission protein (DRP1) and decreased fusion protein (OPA1) expression. HG-treated pericytes displayed lower contractile capability than NG-treated cells (20.23 ± 7.15% vs. 29.46 ± 9.41%). The myogenic response was impaired in penetrating arterioles isolated from diabetic rats in comparison with non-diabetic rats. Autoregulation of CBF measured by a laser Doppler flowmeter was impaired in diabetic rats compared with non-diabetic rats. Diabetic rats exhibited greater BBB leakage than control rats. The cognitive function was examined using an eight-arm water maze. Diabetic rats took longer time to escape than the non-diabetic rats indicating learning and memory deficits. In conclusion, hyperglycemia induces pericyte dysfunction by altering mitochondrial dynamics and diminishing contractile capability, which promotes BBB leakage, decreases CBF autoregulation and contributes to diabetes-related dementia.

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

2017 ◽  
Vol 46 (1) ◽  
pp. 335-347 ◽  
Author(s):  
Yu-xing Fei ◽  
Tian-hong Zhang ◽  
Jing Zhao ◽  
He Ren ◽  
Ya-nan Du ◽  
...  

Objective To investigate the effect of hypothermia on the pharmacokinetics and pharmacodynamics of nimodipine in rabbits using in vivo and in vitro methods. Methods Five healthy New Zealand rabbits received a single dose of nimodipine (0.5 mg/kg) intravenously under normothermic and hypothermic conditions. Doppler ultrasound was used to monitor cerebral blood flow, vascular resistance, and heart rate. In vitro evaluations of protein binding, hepatocyte uptake and intrinsic clearance of liver microsomes at different temperatures were also conducted. Results Plasma concentrations of nimodipine were significantly higher in hypothermia than in normothermia. Nimodipine improved cerebral blood flow under both conditions, but had a longer effective duration during the hypothermic period. Low temperature decreased the intrinsic clearance of liver microsomes, with no change in protein binding or hepatocyte uptake of nimodipine. Conclusion Nimodipine is eliminated at a slower rate during hypothermia than during normothermia, mainly due to the decreased activity of cytochrome P450 enzymes. This results in elevated system exposure with little enhancement in pharmacological effect.


2001 ◽  
Vol 1 ◽  
pp. 168-180 ◽  
Author(s):  
Lars Edvinsson ◽  
Peter J. Goadsby ◽  
Rolf Uddman

Amylin and adrenomedullin are two peptides structurally related to calcitonin gene-related peptide (CGRP). We studied the occurrence of amylin in trigeminal ganglia and cerebral blood vessels of the cat with immunocytochemistry and evaluated the role of amylin and adrenomedullin in the cerebral circulation by in vitro and in vivo pharmacology. Immunocytochemistry revealed that numerous nerve cell bodies in the trigeminal ganglion contained CGRP immunoreactivity (-ir); some of these also expressed amylin-ir but none adrenomedullin-ir. There were numerous nerve fibres surrounding cerebral blood vessels that contained CGRP-ir. Occasional fibres contained amylin-ir while we observed no adrenomedullin-ir in the vessel walls. With RT-PCR and Real-Time�PCR we revealed the presence of mRNA for calcitonin receptor-like receptor (CLRL) and receptor-activity-modifying proteins (RAMPs) in cat cerebral arteries. In vitro studies revealed that amylin, adrenomedullin, and CGRP relaxed ring segments of the cat middle cerebral artery. CGRP and amylin caused concentration-dependent relaxations at low concentrations of PGF2a-precontracted segment (with or without endothelium) whereas only at high concentration did adrenomedullin cause relaxation. CGRP8-37 blocked the CGRP and amylin induced relaxations in a parallel fashion. In vivo studies of amylin, adrenomedullin, and CGRP showed a brisk reproducible increase in local cerebral blood flow as examined using laser Doppler flowmetry applied to the cerebral cortex of the a-chloralose�anesthetized cat. The responses to amylin and CGRP were blocked by CGRP8-37. The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 675 ◽  
Author(s):  
Mariana Amaral ◽  
Ana Sofia Martins ◽  
José Catarino ◽  
Pedro Faísca ◽  
Pradeep Kumar ◽  
...  

Currently, insulin can only be administered through the subcutaneous route. Due to the flaws associated with this route, it is of interest to orally deliver this drug. However, insulin delivered orally has several barriers to overcome as it is degraded by the stomach’s low pH, enzymatic content, and poor absorption in the gastrointestinal tract. Polymers with marine source like chitosan are commonly used in nanotechnology and drug delivery due to their biocompatibility and special features. This work focuses on the preparation and characterization of mucoadhesive insulin-loaded polymeric nanoparticles. Results showed a suitable mean size for oral administration (<600 nm by dynamic laser scattering), spherical shape, encapsulation efficiency (59.8%), and high recovery yield (80.6%). Circular dichroism spectroscopy demonstrated that protein retained its secondary structure after encapsulation. Moreover, the mucoadhesive potential of the nanoparticles was assessed in silico and the results, corroborated with ex-vivo experiments, showed that using chitosan strongly increases mucoadhesion. Besides, in vitro and in vivo safety assessment of the final formulation were performed, showing no toxicity. Lastly, the insulin-loaded nanoparticles were effective in reducing diabetic rats’ glycemia. Overall, the coating of insulin-loaded nanoparticles with chitosan represents a potentially safe and promising approach to protect insulin and enhance peroral delivery.


2005 ◽  
Vol 25 (10) ◽  
pp. 1288-1300 ◽  
Author(s):  
Ivan T Demchenko ◽  
Yuriy I Luchakov ◽  
Alexander N Moskvin ◽  
Diana R Gutsaeva ◽  
Barry W Allen ◽  
...  

Hyperbaric oxygen (HBO2) increases oxygen tension (PO2) in blood but reduces blood flow by means of O2-induced vasoconstriction. Here we report the first quantitative evaluation of these opposing effects on tissue PO2 in brain, using anesthetized rats exposed to HBO2 at 2 to 6 atmospheres absolute (ATA). We assessed the contribution of regional cerebral blood flow (rCBF) to brain PO2 as inspired PO2 (PiO2) exceeds 1 ATA. We measured rCBF and local PO2 simultaneously in striatum using collocated platinum electrodes. Cerebral blood flow was computed from H2 clearance curves in vivo and PO2 from electrodes calibrated in vitro, before and after insertion. Arterial PCO2 was controlled, and body temperature, blood pressure, and EEG were monitored. Scatter plots of rCBF versus pO2 were nonlinear ( R2 = 0.75) for rats breathing room air but nearly linear ( R2 = 0.88–0.91) for O2 at 2 to 6 ATA. The contribution of rCBF to brain PO2 was estimated at constant inspired PO2, by increasing rCBF with acetazolamide (AZA) or decreasing it with N-nitro-l-arginine methyl ester (l-NAME). At basal rCBF (78 mL/100 g min), local PO2 increased 7- to 33-fold at 2 to 6 ATA, compared with room air. A doubling of rCBF increased striatal PO2 not quite two-fold in rats breathing room air but 13- to 64-fold in those breathing HBO2 at 2 to 6 ATA. These findings support our hypothesis that HBO2 increases PO2 in brain in direct proportion to rCBF.


1996 ◽  
Vol 16 (6) ◽  
pp. 1263-1270 ◽  
Author(s):  
Christian Mélot ◽  
Jacques Berré ◽  
Jean-Jacques Moraine ◽  
Robert Jean Kahn

The Kety-Schmidt technique can be regarded as the reference method for the measurement of cerebral blood flow (CBF). However, the method is somewhat cumbersome for routine use in the intensive care unit (ICU) at the bedside. The continuous thermodilution technique developed many years ago for the measurement of coronary sinus blood flow can be applied for the measurement of jugular blood flow (JBF). However, the measurement of JBF by thermodilution has never been validated using the Kety-Schmidt reference method. We first validate the continuous thermodilution in vitro by comparison with a volumetric flow. The thermodilution method is accurate for flows between 50 and 900 ml min−1 with a mean difference volumetric-thermodilution flow of −1 ± 18 ml min−1 (mean ± SD), and precise with a coefficient of variability ranging between 1.21% and 2.50%. In vivo accuracy was assessed by comparing in 15 comatose patients CBF measured using the Kety-Schmidt (CBFKS) method and estimated from JBF measured by thermodilution (CBFTH) at four levels of arterial PaCO2 (25, 30, 35, and 40 mm Hg). The mean difference CBFKS — CBFTH is −0.9 ± 3.6 ml min−1 100 g−1. In vivo precision of the method was good, with a coefficient of variability of 4.1% in mean. We conclude that jugular continuous thermodilution technique is a reliable method for estimating CBF at the bedside. This technique allows repeated measurements jugular bulb blood sampling for brain metabolic studies.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1677
Author(s):  
Mohamed Bouhrim ◽  
Hayat Ouassou ◽  
Salima Boutahiri ◽  
Nour Elhouda Daoudi ◽  
Hamza Mechchate ◽  
...  

Opuntia dillenii Ker Gawl. is one of the medicinal plants used for the prevention and treatment of diabetes mellitus (DM) in Morocco. This study aims to investigate the antihyperglycemic effect of Opuntia dillenii seed oil (ODSO), its mechanism of action, and any hypoglycemic risk and toxic effects. The antihyperglycemic effect was assessed using the OGTT test in normal and streptozotocin (STZ)-diabetic rats. The mechanisms of action were explored by studying the effect of ODSO on the intestinal absorption of d-glucose using the intestinal in situ single-pass perfusion technique. An Ussing chamber was used to explore the effects of ODSO on intestinal sodium-glucose cotransporter 1 (SGLT1). Additionally, ODSO’s effect on carbohydrate degrading enzymes, pancreatic α-amylase, and intestinal α-glucosidase was evaluated in vitro and in vivo using STZ-diabetic rats. The acute toxicity test on mice was performed, along with a single-dose hypoglycemic effect test. The results showed that ODSO significantly attenuated the postprandial hyperglycemia in normal and STZ-diabetic rats. Indeed, ODSO significantly decreased the intestinal d-glucose absorption in situ. The ex vivo test (Ussing chamber) showed that the ODSO significantly blocks the SGLT1 (IC50 = 60.24 µg/mL). Moreover, ODSO indu\ced a significant inhibition of intestinal α-glucosidase (IC50 = 278 ± 0.01 µg/mL) and pancreatic α-amylase (IC50 = 0.81 ± 0.09 mg/mL) in vitro. A significant decrease of postprandial hyperglycemia was observed in sucrose/starch-loaded normal and STZ-diabetic ODSO-treated rats. On the other hand, ODSO had no risk of hypoglycemia on the basal glucose levels in normal rats. Therefore, no toxic effect was observed in ODSO-treated mice up to 7 mL/kg. The results of this study suggest that ODSO could be suitable as an antidiabetic functional food.


2005 ◽  
Vol 25 (6) ◽  
pp. 775-784 ◽  
Author(s):  
Joseph R. Meno ◽  
Thien-son K. Nguyen ◽  
Elise M. Jensen ◽  
G. Alexander West ◽  
Leonid Groysman ◽  
...  

Despite caffeine's wide consumption and well-documented psychoactive effects, little is known regarding the effects of caffeine on neurovascular coupling. In the present study, we evaluated the effects of caffeine, an adenosine receptor antagonist, on intracerebral arterioles in vitro and subsequently, on the pial circulation in vivo during cortical activation induced by contralateral sciatic nerve stimulation (SNS). In our in vitro studies, we utilized isolated intracerebral arterioles to determine the effects of caffeine (10 or 50 μmol/L) on adenosine-induced vasodilatation. At the lower concentration, caffeine was without effect, but at the higher concentration, caffeine produced significant attenuation. In our in vivo studies, we determined the cerebrospinal fluid (CSF) caffeine concentrations at 15, 30, and 60 mins after intravenous administration of 5, 10 and 40 mg/kg. At the latter two concentrations, CSF levels exceeded 10 μmol/L. We then evaluated the pial arteriolar response during cortical activation caused by contralateral SNS after administering caffeine intravenously (0, 5, 10, 20 30, and 40 mg/kg). The pial circulation was observed through a closed cranial window in chloralose-anesthetized Sprague—Dawley rats. The contralateral sciatic nerve was isolated, positioned on silver electrodes and stimulated for 20 secs (0.20 V, 0.5 ms, and 5 Hz). Arteriolar diameter was quantified using an automated video dimension analyzer. Contralateral SNS resulted in a 23.8%±3.9% increase in pial arteriolar diameter in the hindlimb sensory cortex under control conditions. Intravenous administration of caffeine at the lowest dose studied (5 mg/kg) had no effect on either resting arteriolar diameter or SNS-induced vasodilatation. However, at higher doses (10, 20, 30, and 40 mg/kg, intravenously), caffeine significantly ( P<0.05; n=6) attenuated both resting diameter and cerebral blood flow (CBF) responses to somatosensory stimulation. Intravenous administration of theophylline (10, 20, and 40 mg/kg), another adenosine receptor antagonist, also significantly reduced SNS-induced vasodilatation in a dose-dependent manner. Hypercarbic vasodilatation was unaffected by either caffeine or theophylline. The results of the present study show that caffeine significantly reduces cerebrovascular responses to both adenosine and to somatosensory stimulation and supports a role of adenosine in the regulation of CBF during functional neuronal activity.


Sign in / Sign up

Export Citation Format

Share Document