Computed Tomography Perfusion–Based Prediction of Core Infarct and Tissue at Risk: Can Artificial Intelligence Help Reduce Radiation Exposure?

Stroke ◽  
2021 ◽  
Author(s):  
Girish Bathla ◽  
Yanan Liu ◽  
Honghai Zhang ◽  
Milan Sonka ◽  
Colin Derdeyn

Background and Purpose: We explored the feasibility of automated, arterial input function independent, vendor neutral prediction of core infarct, and penumbral tissue using complete and partial computed tomographic perfusion data sets through neural networks. Methods: Using retrospective computed tomographic perfusion data from 57 patients, split as training/validation (60%/40%), we developed and validated separate 2-dimensional U-net models for cerebral blood flow (CBF) and time to maximum (Tmax) maps calculation to predict core infarct and tissue at risk, respectively. Once trained, the full sets of 28 input images were sequentially reduced to equitemporal 14, 10, and 7 time points. The averaged structural similarity index measure between the model-derived images and ground truth perfusion maps was compared. Volumes for core infarct and Tmax were compared using the Pearson correlation coefficient. Results: Both CBF and Tmax maps derived using 28 and 14 time points had similar structural similarity index measure (0.80–0.81; P >0.05) when compared with ground truth images. The Pearson correlation for the CBF and Tmax volumes derived from the model using 28-tp with ground truth volumes derived from the RAPID software was 0.69 for CBF and 0.74 for Tmax. The predicted maps were fully concordant in terms of laterality to the commercial perfusion maps. The mean Dice scores were 0.54 for the core infarct and 0.63 for the hypoperfusion maps. Conclusion: Artificial intelligence model-derived volumes show good correlation with RAPID-derived volumes for CBF and Tmax. Within the constraints of a small sample size, the perfusion map quality is similar when using 14-tp instead of 28-tp. Our findings provide proof of concept that vendor neutral artificial intelligence models for computed tomographic perfusion processing using complete or partial image data sets appear feasible. The model accuracy could be further optimized using larger data sets.

2021 ◽  
Vol 7 (2) ◽  
pp. 75
Author(s):  
Halim Bayuaji Sumarna ◽  
Ema Utami ◽  
Anggit Dwi Hartanto

Image enhancement merupakan prosedur yang digunakan untuk memproses gambar sehingga dapat memperbaiki atau meningkatkan kualitas gambar agar selanjutnya dapat dianalis untuk tujuan tertentu. Ada banyak algoritma image enhancement yang dapat diterapkan pada suatu gambar, salah satunya dapat menggunakan algoritma structural similarity index measure (SSIM), algoritma ini berfungsi sebagai alat ukur dalam menilai kualitas gambar, bekerja dengan membandingkan fitur structural dari gambar, dan kualitas gambar dijelaskan oleh kesamaan structural. Selain untuk menilai kualitas suatu gambar, SSIM dapat menjadi metode dalam menganalisis perbedaan gambar, sehingga diketahui anomali dari perbandingan dua gambar berdasarkan data structural dari sebuah gambar. Tinjauan literature sistematis ini digunakan untuk menganalisis dan fokus pada algoritma SSIM dalam mengetahui anomaly 2 gambar yang terlihat mirip secara human visual system. Hasil sistematis review menunjukkan bahwa penggunaan algoritma SSIM dalam menilai kualitas gambar berkorelasi kuat dengan HVS (Human Vision System) dan dalam deteksi anomaly gambar menghasilkan akurasi yang berbeda, karena terpengaruh intensitas cahaya dan posisi kamera dalam mengambil gambar sebagai dataset.Kata Kunci— SSIM, anomaly, gambar, deteksiImage enhancement is a procedure used to process images so that they can correct or improve image quality so that they can then be analyzed for specific purposes. Many image enhancement algorithms can be applied to an image. one of the usable methods is the structural similarity index measure (SSIM) algorithm, this algorithm serves as a measuring tool in assessing image quality. It works by comparing the structural features of images, and the image quality is explained by structural similarity. In addition to assessing the quality of an image, SSIM can be a method of analyzing image differences. So, the anomalies are known from the comparison of two images based on the structural data from an image. This systematic literature review is used to analyze and focus on the SSIM algorithm in knowing anomaly 2 images that look similar to the human visual system. Systematic review results show that the use of the SSIM algorithm in assessing image quality is strongly correlated with HVS (Human Vision System). In anomaly detection of images produces different accuracy because it is affected by light intensity and camera position in taking pictures as a dataset.Keywords— SSIM, anomaly, gambar, deteksi


2020 ◽  
Vol 9 (4) ◽  
pp. 1461-1467
Author(s):  
Indrarini Dyah Irawati ◽  
Sugondo Hadiyoso ◽  
Yuli Sun Hariyani

In this study, we proposed compressive sampling for MRI reconstruction based on sparse representation using multi-wavelet transformation. Comparing the performance of wavelet decomposition level, which are Level 1, Level 2, Level 3, and Level 4. We used gaussian random process to generate measurement matrix. The algorithm used to reconstruct the image is . The experimental results showed that the use of wavelet multi-level can generate higher compression ratio but requires a longer processing time. MRI reconstruction results based on the parameters of the peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) show that the higher the level of decomposition in wavelets, the value of both decreases.


2021 ◽  
Vol 11 (8) ◽  
pp. 3508
Author(s):  
Pedro Miguel Martinez-Girones ◽  
Javier Vera-Olmos ◽  
Mario Gil-Correa ◽  
Ana Ramos ◽  
Lina Garcia-Cañamaque ◽  
...  

Typically, pseudo-Computerized Tomography (CT) synthesis schemes proposed in the literature rely on complete atlases acquired with the same field of view (FOV) as the input volume. However, clinical CTs are usually acquired in a reduced FOV to decrease patient ionization. In this work, we present the Franken-CT approach, showing how the use of a non-parametric atlas composed of diverse anatomical overlapping Magnetic Resonance (MR)-CT scans and deep learning methods based on the U-net architecture enable synthesizing extended head and neck pseudo-CTs. Visual inspection of the results shows the high quality of the pseudo-CT and the robustness of the method, which is able to capture the details of the bone contours despite synthesizing the resulting image from knowledge obtained from images acquired with a completely different FOV. The experimental Zero-Normalized Cross-Correlation (ZNCC) reports 0.9367 ± 0.0138 (mean ± SD) and 95% confidence interval (0.9221, 0.9512); the experimental Mean Absolute Error (MAE) reports 73.9149 ± 9.2101 HU and 95% confidence interval (66.3383, 81.4915); the Structural Similarity Index Measure (SSIM) reports 0.9943 ± 0.0009 and 95% confidence interval (0.9935, 0.9951); and the experimental Dice coefficient for bone tissue reports 0.7051 ± 0.1126 and 95% confidence interval (0.6125, 0.7977). The voxel-by-voxel correlation plot shows an excellent correlation between pseudo-CT and ground-truth CT Hounsfield Units (m = 0.87; adjusted R2 = 0.91; p < 0.001). The Bland–Altman plot shows that the average of the differences is low (−38.6471 ± 199.6100; 95% CI (−429.8827, 352.5884)). This work serves as a proof of concept to demonstrate the great potential of deep learning methods for pseudo-CT synthesis and their great potential using real clinical datasets.


2020 ◽  
Vol 13 (4) ◽  
pp. 10-17
Author(s):  
Fadhil Kadhim Zaidan

In this work, a grayscale image steganography scheme is proposed using a discrete wavelet transform (DWT) and singular value decomposition (SVD). In this scheme, 2-level DWT is applied to a cover image to obtain the high frequency band HL2 which is utilized to embed a secret grayscale image based on the SVD technique. The robustness and the imperceptibility of the proposed steganography algorithm are controlled by a scaling factor for obtaining an acceptable trade-off between them. Peak signal to noise ratio (PSNR) and Structural Similarity Index Measure (SSIM) are used for assessing the efficiency of the proposed approach. Experimental results demonstrate that the proposed scheme still holds its validity under different known attacks such as noise addition, filtering, cropping and JPEG compression


2021 ◽  
Author(s):  
Basma Ahmed ◽  
Mohamed Abdel-Nasser ◽  
Osama A. Omer ◽  
Amal Rashed ◽  
Domenec Puig

Blind or non-referential image quality assessment (NR-IQA) indicates the problem of evaluating the visual quality of an image without any reference, Therefore, the need to develop a new measure that does not depend on the reference pristine image. This paper presents a NR-IQA method based on restoration scheme and a structural similarity index measure (SSIM). Specifically, we use blind restoration schemes for blurred images by reblurring the blurred image and then we use it as a reference image. Finally, we use the SSIM as a full reference metric. The experiments performed on standard test images as well as medical images. The results demonstrated that our results using a structural similarity index measure are better than other methods such as spectral kurtosis-based method.


2016 ◽  
Vol 16 (5) ◽  
pp. 109-118
Author(s):  
Xiaolu Xie

Abstract In this paper we propose a new approach for image denoising based on the combination of PM model, isotropic diffusion model, and TV model. To emphasize the superiority of the proposed model, we have used the Structural Similarity Index Measure (SSIM) and Peak Signal to Noise Ratio (PSNR) as the subjective criterion. Numerical experiments with different images show that our algorithm has the highest PSNR and SS1M, as well as the best visual quality among the six algorithms. Experimental results confirm the high performance of the proposed model compared with some well-known algorithms. In a word, the new model outperforms the mentioned three well known algorithms in reducing the Gibbs-type artifacts, edges blurring, and the block effect, simultaneously.


2021 ◽  
Vol 36 (1) ◽  
pp. 642-649
Author(s):  
G. Sharvani Reddy ◽  
R. Nanmaran ◽  
Gokul Paramasivam

Aim: Image is the most powerful tool to analyze the information. Sometimes the captured image gets affected with blur and noise in the environment, which degrades the quality of the image. Image restoration is a technique in image processing where the degraded image can be restored or recovered to its nearest original image. Materials and Methods: In this research Lucy-Richardson algorithm is used for restoring blurred and noisy images using MATLAB software. And the proposed work is compared with Wiener filter, and the sample size for each group is 30. Results: The performance was compared based on three parameters, Power Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Normalized Correlation (NC). High values of PSNR, SSIM and NC indicate the better performance of restoration algorithms. Lucy-Richardson provides a mean PSNR of 10.4086db, mean SSIM of 0.4173%, and NC of 0.7433% and Wiener filter provides a mean PSNR of 6.3979db, SSIM of 0.3016%, NC of 0.3276%. Conclusion: Based on the experimental results and statistical analysis using independent sample T test, image restoration using Lucy-Richardson algorithm significantly performs better than Wiener filter on restoring the degraded image with PSNR (P<0.001) and SSIM (P<0.001).


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6645
Author(s):  
Minseok Kang ◽  
Jaemin Baek

In this paper, a synthetic aperture radar (SAR) change detection approach is proposed based on a structural similarity index measure (SSIM) and multiple-window processing (MWP). The proposed scheme is performed in two steps: (1) generation of a coherence image based on MWP associated with SSIM and (2) gamma correction (GC) filtering. The proposed method is capable of providing a high-quality coherence image because the MWP operation based on SSIM has high sensitivity to the similarity measure for intensity between two SAR images. By finding an optimum value of order of GC, the proposed method can considerably reduce the effect of speckle noise on the coherence image, while retaining nearly all the information related to changed region involved in the change detection map. Several experimental results are presented to demonstrate the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document