SMEM Algorithm Is Not Fully Compatible with Maximum-Likelihood Framework

2002 ◽  
Vol 14 (6) ◽  
pp. 1261-1266 ◽  
Author(s):  
Akihiro Minagawa ◽  
Norio Tagawa ◽  
Toshiyuki Tanaka

The expectation-maximization (EM) algorithm with split-and-merge operations (SMEM algorithm) proposed by Ueda, Nakano, Ghahramani, and Hinton (2000) is a nonlocal searching method, applicable to mixture models, for relaxing the local optimum property of the EM algorithm. In this article, we point out that the SMEM algorithm uses the acceptance-rejection evaluation method, which may pick up a distribution with smaller likelihood, and demonstrate that an increase in likelihood can then be guaranteed only by comparing log likelihoods.

2021 ◽  
Author(s):  
Masahiro Kuroda

Mixture models become increasingly popular due to their modeling flexibility and are applied to the clustering and classification of heterogeneous data. The EM algorithm is largely used for the maximum likelihood estimation of mixture models because the algorithm is stable in convergence and simple in implementation. Despite such advantages, it is pointed out that the EM algorithm is local and has slow convergence as the main drawback. To avoid the local convergence of the EM algorithm, multiple runs from several different initial values are usually used. Then the algorithm may take a large number of iterations and long computation time to find the maximum likelihood estimates. The speedup of computation of the EM algorithm is available for these problems. We give the algorithms to accelerate the convergence of the EM algorithm and apply them to mixture model estimation. Numerical experiments examine the performance of the acceleration algorithms in terms of the number of iterations and computation time.


2016 ◽  
Vol 24 (2) ◽  
pp. 293-317 ◽  
Author(s):  
Thiago Ferreira Covões ◽  
Eduardo Raul Hruschka ◽  
Joydeep Ghosh

This paper describes the evolutionary split and merge for expectation maximization (ESM-EM) algorithm and eight of its variants, which are based on the use of split and merge operations to evolve Gaussian mixture models. Asymptotic time complexity analysis shows that the proposed algorithms are competitive with the state-of-the-art genetic-based expectation maximization (GA-EM) algorithm. Experiments performed in 35 data sets showed that ESM-EM can be computationally more efficient than the widely used multiple runs of EM (for different numbers of components and initializations). Moreover, a variant of ESM-EM free from critical parameters was shown to be able to provide competitive results with GA-EM, even when GA-EM parameters were fine-tuned a priori.


Author(s):  
Asger Hobolth ◽  
Jens Ledet Jensen

We describe statistical inference in continuous time Markov processes of DNA sequences related by a phylogenetic tree. The maximum likelihood estimator can be found by the expectation maximization (EM) algorithm and an expression for the information matrix is also derived. We provide explicit analytical solutions for the EM algorithm and information matrix.


2021 ◽  
Author(s):  
Samyajoy Pal ◽  
Christian Heumann

Abstract A generalized way of building mixture models using different distributions is explored in this article. The EM algorithm is used with some modifications to accommodate different distributions within the same model. The model uses any point estimate available for the respective distributions to estimate the mixture components and model parameters. The study is focused on the application of mixture models in unsupervised learning problems, especially cluster analysis. The convenience of building mixture models using the generalized approach is further emphasised by appropriate examples, exploiting the well-known maximum likelihood and Bayesian estimates of the parameters of the parent distributions.


1995 ◽  
Vol 12 (5) ◽  
pp. 515-527 ◽  
Author(s):  
Jeanine J. Houwing-Duistermaat ◽  
Lodewijk A. Sandkuijl ◽  
Arthur A. B. Bergen ◽  
Hans C. van Houwelingen

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5549
Author(s):  
Ossi Kaltiokallio ◽  
Roland Hostettler ◽  
Hüseyin Yiğitler ◽  
Mikko Valkama

Received signal strength (RSS) changes of static wireless nodes can be used for device-free localization and tracking (DFLT). Most RSS-based DFLT systems require access to calibration data, either RSS measurements from a time period when the area was not occupied by people, or measurements while a person stands in known locations. Such calibration periods can be very expensive in terms of time and effort, making system deployment and maintenance challenging. This paper develops an Expectation-Maximization (EM) algorithm based on Gaussian smoothing for estimating the unknown RSS model parameters, liberating the system from supervised training and calibration periods. To fully use the EM algorithm’s potential, a novel localization-and-tracking system is presented to estimate a target’s arbitrary trajectory. To demonstrate the effectiveness of the proposed approach, it is shown that: (i) the system requires no calibration period; (ii) the EM algorithm improves the accuracy of existing DFLT methods; (iii) it is computationally very efficient; and (iv) the system outperforms a state-of-the-art adaptive DFLT system in terms of tracking accuracy.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xianghui Yuan ◽  
Feng Lian ◽  
Chongzhao Han

Tracking target with coordinated turn (CT) motion is highly dependent on the models and algorithms. First, the widely used models are compared in this paper—coordinated turn (CT) model with known turn rate, augmented coordinated turn (ACT) model with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models (MM) framework, the algorithm based on expectation maximization (EM) algorithm is derived, including both the batch form and the recursive form. Compared with the widely used interacting multiple model (IMM) algorithm, the EM algorithm shows its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document