Statistical Inference in Evolutionary Models of DNA Sequences via the EM Algorithm

Author(s):  
Asger Hobolth ◽  
Jens Ledet Jensen

We describe statistical inference in continuous time Markov processes of DNA sequences related by a phylogenetic tree. The maximum likelihood estimator can be found by the expectation maximization (EM) algorithm and an expression for the information matrix is also derived. We provide explicit analytical solutions for the EM algorithm and information matrix.

Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 373
Author(s):  
Branislav Panić ◽  
Jernej Klemenc ◽  
Marko Nagode

A commonly used tool for estimating the parameters of a mixture model is the Expectation–Maximization (EM) algorithm, which is an iterative procedure that can serve as a maximum-likelihood estimator. The EM algorithm has well-documented drawbacks, such as the need for good initial values and the possibility of being trapped in local optima. Nevertheless, because of its appealing properties, EM plays an important role in estimating the parameters of mixture models. To overcome these initialization problems with EM, in this paper, we propose the Rough-Enhanced-Bayes mixture estimation (REBMIX) algorithm as a more effective initialization algorithm. Three different strategies are derived for dealing with the unknown number of components in the mixture model. These strategies are thoroughly tested on artificial datasets, density–estimation datasets and image–segmentation problems and compared with state-of-the-art initialization methods for the EM. Our proposal shows promising results in terms of clustering and density-estimation performance as well as in terms of computational efficiency. All the improvements are implemented in the rebmix R package.


2011 ◽  
Vol 48 (A) ◽  
pp. 277-293 ◽  
Author(s):  
Mogens Bladt ◽  
Luz Judith R. Esparza ◽  
Bo Friis Nielsen

This paper is concerned with statistical inference for both continuous and discrete phase-type distributions. We consider maximum likelihood estimation, where traditionally the expectation-maximization (EM) algorithm has been employed. Certain numerical aspects of this method are revised and we provide an alternative method for dealing with the E-step. We also compare the EM algorithm to a direct Newton–Raphson optimization of the likelihood function. As one of the main contributions of the paper, we provide formulae for calculating the Fisher information matrix both for the EM algorithm and Newton–Raphson approach. The inverse of the Fisher information matrix provides the variances and covariances of the estimated parameters.


2002 ◽  
Vol 14 (6) ◽  
pp. 1261-1266 ◽  
Author(s):  
Akihiro Minagawa ◽  
Norio Tagawa ◽  
Toshiyuki Tanaka

The expectation-maximization (EM) algorithm with split-and-merge operations (SMEM algorithm) proposed by Ueda, Nakano, Ghahramani, and Hinton (2000) is a nonlocal searching method, applicable to mixture models, for relaxing the local optimum property of the EM algorithm. In this article, we point out that the SMEM algorithm uses the acceptance-rejection evaluation method, which may pick up a distribution with smaller likelihood, and demonstrate that an increase in likelihood can then be guaranteed only by comparing log likelihoods.


2011 ◽  
Vol 48 (A) ◽  
pp. 277-293
Author(s):  
Mogens Bladt ◽  
Luz Judith R. Esparza ◽  
Bo Friis Nielsen

This paper is concerned with statistical inference for both continuous and discrete phase-type distributions. We consider maximum likelihood estimation, where traditionally the expectation-maximization (EM) algorithm has been employed. Certain numerical aspects of this method are revised and we provide an alternative method for dealing with the E-step. We also compare the EM algorithm to a direct Newton–Raphson optimization of the likelihood function. As one of the main contributions of the paper, we provide formulae for calculating the Fisher information matrix both for the EM algorithm and Newton–Raphson approach. The inverse of the Fisher information matrix provides the variances and covariances of the estimated parameters.


1995 ◽  
Vol 12 (5) ◽  
pp. 515-527 ◽  
Author(s):  
Jeanine J. Houwing-Duistermaat ◽  
Lodewijk A. Sandkuijl ◽  
Arthur A. B. Bergen ◽  
Hans C. van Houwelingen

2021 ◽  
Author(s):  
Mathias Lorieux

AbstractIn this short note, a new unbiased maximum-likelihood estimator is proposed for the recombination frequency in the F2 cross. The estimator is much faster to calculate than its EM algorithm equivalent, yet as efficient. Simulation studies are carried to illustrate the gain over another simple estimate proposed by Benito & Gallego (2004).


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5549
Author(s):  
Ossi Kaltiokallio ◽  
Roland Hostettler ◽  
Hüseyin Yiğitler ◽  
Mikko Valkama

Received signal strength (RSS) changes of static wireless nodes can be used for device-free localization and tracking (DFLT). Most RSS-based DFLT systems require access to calibration data, either RSS measurements from a time period when the area was not occupied by people, or measurements while a person stands in known locations. Such calibration periods can be very expensive in terms of time and effort, making system deployment and maintenance challenging. This paper develops an Expectation-Maximization (EM) algorithm based on Gaussian smoothing for estimating the unknown RSS model parameters, liberating the system from supervised training and calibration periods. To fully use the EM algorithm’s potential, a novel localization-and-tracking system is presented to estimate a target’s arbitrary trajectory. To demonstrate the effectiveness of the proposed approach, it is shown that: (i) the system requires no calibration period; (ii) the EM algorithm improves the accuracy of existing DFLT methods; (iii) it is computationally very efficient; and (iv) the system outperforms a state-of-the-art adaptive DFLT system in terms of tracking accuracy.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xianghui Yuan ◽  
Feng Lian ◽  
Chongzhao Han

Tracking target with coordinated turn (CT) motion is highly dependent on the models and algorithms. First, the widely used models are compared in this paper—coordinated turn (CT) model with known turn rate, augmented coordinated turn (ACT) model with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models (MM) framework, the algorithm based on expectation maximization (EM) algorithm is derived, including both the batch form and the recursive form. Compared with the widely used interacting multiple model (IMM) algorithm, the EM algorithm shows its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document