scholarly journals Models and Algorithms for Tracking Target with Coordinated Turn Motion

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xianghui Yuan ◽  
Feng Lian ◽  
Chongzhao Han

Tracking target with coordinated turn (CT) motion is highly dependent on the models and algorithms. First, the widely used models are compared in this paper—coordinated turn (CT) model with known turn rate, augmented coordinated turn (ACT) model with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models (MM) framework, the algorithm based on expectation maximization (EM) algorithm is derived, including both the batch form and the recursive form. Compared with the widely used interacting multiple model (IMM) algorithm, the EM algorithm shows its effectiveness.


2021 ◽  
Vol 11 (11) ◽  
pp. 4908
Author(s):  
Yanxu Liu ◽  
Zhongliang Deng ◽  
Enwen Hu

For mass application positioning demands, the current single positioning sensor cannot provide reliable and accurate positioning. Herein, we present batch inverse covariance intersection (BICI) and BICI with interacting multiple model (BICI-IMM) multi-sensor fusion positioning methods, which are based on the batch form of the sequential inverse covariance intersection (SICI) fusion method. Meanwhile, it is proved that the BICI is robust. Compared with SICI, BICI-IMM reduces estimation error variance of the motion model and has less conservativeness. The BICI-IMM algorithm improves the accuracy of local filtering by interacting with multiple models and realizes global fusion estimation based on BICI. The validity of the BICI and BICI-IMM algorithm are demonstrated by two simulations and experiments in the open and semi-open scenes, and its positioning accuracy relations are shown. In addition, it is demonstrated that the BICI-IMM algorithm can improve the positioning accuracy in the actual scenes.



Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5549
Author(s):  
Ossi Kaltiokallio ◽  
Roland Hostettler ◽  
Hüseyin Yiğitler ◽  
Mikko Valkama

Received signal strength (RSS) changes of static wireless nodes can be used for device-free localization and tracking (DFLT). Most RSS-based DFLT systems require access to calibration data, either RSS measurements from a time period when the area was not occupied by people, or measurements while a person stands in known locations. Such calibration periods can be very expensive in terms of time and effort, making system deployment and maintenance challenging. This paper develops an Expectation-Maximization (EM) algorithm based on Gaussian smoothing for estimating the unknown RSS model parameters, liberating the system from supervised training and calibration periods. To fully use the EM algorithm’s potential, a novel localization-and-tracking system is presented to estimate a target’s arbitrary trajectory. To demonstrate the effectiveness of the proposed approach, it is shown that: (i) the system requires no calibration period; (ii) the EM algorithm improves the accuracy of existing DFLT methods; (iii) it is computationally very efficient; and (iv) the system outperforms a state-of-the-art adaptive DFLT system in terms of tracking accuracy.



2019 ◽  
Vol 286 (1911) ◽  
pp. 20191519 ◽  
Author(s):  
Christopher K. Akcali ◽  
Hibraim Adán Pérez-Mendoza ◽  
David W. Kikuchi ◽  
David W. Pfennig

Batesian mimics—benign species that receive protection from predation by resembling a dangerous species—often occur with multiple model species. Here, we examine whether geographical variation in the number of local models generates geographical variation in mimic–model resemblance. In areas with multiple models, selection might be relaxed or even favour imprecise mimicry relative to areas with only one model. We test the prediction that model–mimic match should vary with the number of other model species in a broadly distributed snake mimicry complex where a mimic and a model co-occur both with and without other model species. We found that the mimic resembled its model more closely when they were exclusively sympatric than when they were sympatric with other model species. Moreover, in regions with multiple models, mimic–model resemblance was positively correlated with the resemblance between the model and other model species. However, contrary to predictions, free-ranging natural predators did not attack artificial replicas of imprecise mimics more often when only a single model was present. Taken together, our results suggest that multiple models might generate a geographical mosaic in the degree of phenotype matching between Batesian mimics and their models.



Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 373
Author(s):  
Branislav Panić ◽  
Jernej Klemenc ◽  
Marko Nagode

A commonly used tool for estimating the parameters of a mixture model is the Expectation–Maximization (EM) algorithm, which is an iterative procedure that can serve as a maximum-likelihood estimator. The EM algorithm has well-documented drawbacks, such as the need for good initial values and the possibility of being trapped in local optima. Nevertheless, because of its appealing properties, EM plays an important role in estimating the parameters of mixture models. To overcome these initialization problems with EM, in this paper, we propose the Rough-Enhanced-Bayes mixture estimation (REBMIX) algorithm as a more effective initialization algorithm. Three different strategies are derived for dealing with the unknown number of components in the mixture model. These strategies are thoroughly tested on artificial datasets, density–estimation datasets and image–segmentation problems and compared with state-of-the-art initialization methods for the EM. Our proposal shows promising results in terms of clustering and density-estimation performance as well as in terms of computational efficiency. All the improvements are implemented in the rebmix R package.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Natee Thong-un ◽  
Minoru K. Kurosawa

The occurrence of an overlapping signal is a significant problem in performing multiple objects localization. Doppler velocity is sensitive to the echo shape and is also able to be connected to the physical properties of moving objects, especially for a pulse compression ultrasonic signal. The expectation-maximization (EM) algorithm has the ability to achieve signal separation. Thus, applying the EM algorithm to the overlapping pulse compression signals is of interest. This paper describes a proposed method, based on the EM algorithm, of Doppler velocity estimation for overlapping linear-period-modulated (LPM) ultrasonic signals. Simulations are used to validate the proposed method.



Author(s):  
Chandan K. Reddy ◽  
Bala Rajaratnam

In the field of statistical data mining, the Expectation Maximization (EM) algorithm is one of the most popular methods used for solving parameter estimation problems in the maximum likelihood (ML) framework. Compared to traditional methods such as steepest descent, conjugate gradient, or Newton-Raphson, which are often too complicated to use in solving these problems, EM has become a popular method because it takes advantage of some problem specific properties (Xu et al., 1996). The EM algorithm converges to the local maximum of the log-likelihood function under very general conditions (Demspter et al., 1977; Redner et al., 1984). Efficiently maximizing the likelihood by augmenting it with latent variables and guarantees of convergence are some of the important hallmarks of the EM algorithm. EM based methods have been applied successfully to solve a wide range of problems that arise in fields of pattern recognition, clustering, information retrieval, computer vision, bioinformatics (Reddy et al., 2006; Carson et al., 2002; Nigam et al., 2000), etc. Given an initial set of parameters, the EM algorithm can be implemented to compute parameter estimates that locally maximize the likelihood function of the data. In spite of its strong theoretical foundations, its wide applicability and important usage in solving some real-world problems, the standard EM algorithm suffers from certain fundamental drawbacks when used in practical settings. Some of the main difficulties of using the EM algorithm on a general log-likelihood surface are as follows (Reddy et al., 2008): • EM algorithm for mixture modeling converges to a local maximum of the log-likelihood function very quickly. • There are many other promising local optimal solutions in the close vicinity of the solutions obtained from the methods that provide good initial guesses of the solution. • Model selection criterion usually assumes that the global optimal solution of the log-likelihood function can be obtained. However, achieving this is computationally intractable. • Some regions in the search space do not contain any promising solutions. The promising and nonpromising regions co-exist and it becomes challenging to avoid wasting computational resources to search in non-promising regions. Of all the concerns mentioned above, the fact that most of the local maxima are not distributed uniformly makes it important to develop algorithms that not only help in avoiding some inefficient search over the lowlikelihood regions but also emphasize the importance of exploring promising subspaces more thoroughly (Zhang et al, 2004). This subspace search will also be useful for making the solution less sensitive to the initial set of parameters. In this chapter, we will discuss the theoretical aspects of the EM algorithm and demonstrate its use in obtaining the optimal estimates of the parameters for mixture models. We will also discuss some of the practical concerns of using the EM algorithm and present a few results on the performance of various algorithms that try to address these problems.



2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Lijuan Zhang ◽  
Dongming Li ◽  
Wei Su ◽  
Jinhua Yang ◽  
Yutong Jiang

To improve the effect of adaptive optics images’ restoration, we put forward a deconvolution algorithm improved by the EM algorithm which joints multiframe adaptive optics images based on expectation-maximization theory. Firstly, we need to make a mathematical model for the degenerate multiframe adaptive optics images. The function model is deduced for the points that spread with time based on phase error. The AO images are denoised using the image power spectral density and support constraint. Secondly, the EM algorithm is improved by combining the AO imaging system parameters and regularization technique. A cost function for the joint-deconvolution multiframe AO images is given, and the optimization model for their parameter estimations is built. Lastly, the image-restoration experiments on both analog images and the real AO are performed to verify the recovery effect of our algorithm. The experimental results show that comparing with the Wiener-IBD or RL-IBD algorithm, our iterations decrease 14.3% and well improve the estimation accuracy. The model distinguishes the PSF of the AO images and recovers the observed target images clearly.



Sign in / Sign up

Export Citation Format

Share Document